首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2192篇
  免费   166篇
  国内免费   131篇
  2489篇
  2023年   44篇
  2022年   72篇
  2021年   121篇
  2020年   129篇
  2019年   289篇
  2018年   85篇
  2017年   49篇
  2016年   60篇
  2015年   63篇
  2014年   119篇
  2013年   147篇
  2012年   101篇
  2011年   106篇
  2010年   75篇
  2009年   95篇
  2008年   83篇
  2007年   88篇
  2006年   78篇
  2005年   77篇
  2004年   75篇
  2003年   69篇
  2002年   69篇
  2001年   28篇
  2000年   52篇
  1999年   38篇
  1998年   27篇
  1997年   23篇
  1996年   21篇
  1995年   18篇
  1994年   12篇
  1993年   6篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1989年   9篇
  1988年   5篇
  1987年   5篇
  1985年   12篇
  1984年   9篇
  1983年   4篇
  1982年   11篇
  1981年   11篇
  1980年   8篇
  1979年   10篇
  1978年   10篇
  1977年   12篇
  1976年   8篇
  1975年   14篇
  1974年   4篇
  1973年   5篇
排序方式: 共有2489条查询结果,搜索用时 0 毫秒
51.
52.
Valproic acid (VPA) is a neurotherapeutic drug prescribed for seizures, bipolar disorder, and migraine, including women of reproductive age. VPA is a well‐known teratogen that produces congenital malformations in many organs including the nervous system, as well as later neurodevelopmental disorders, including mental retardation and autism. In developing brain, few studies have examined VPA effects on glial cells, particularly astrocytes. To investigate effects on primary glial precursors, we developed new cell culture and in vivo models using frontal cerebral cortex of postnatal day (P2) rat. In vitro, VPA exposure elicited dose‐dependent, biphasic effects on DNA synthesis and proliferation. In vivo VPA (300 mg/kg) exposure from P2 to P4 increased both DNA synthesis and cell proliferation, affecting primarily astrocyte precursors, as >75% of mitotic cells expressed brain lipid‐binding protein. Significantly, the consequence of early VPA exposure was increased astrocytes, as both S100‐β+ cells and glial fibrillary acidic protein were increased in adolescent brain. Molecularly, VPA served as an HDAC inhibitor in vitro and in vivo as enhanced proliferation was accompanied by increased histone acetylation, whereas it elicited changes in culture in cell‐cycle regulators, including cyclin D1 and E, and cyclin‐dependent kinase (CDK) inhibitors, p21 and p27. Collectively, these data suggest clinically relevant VPA exposures stimulate glial precursor proliferation, though at higher doses can elicit inhibition through differential regulation of CDK inhibitors. Because changes in glial cell functions are proposed as mechanisms contributing to neuropsychiatric disorders, these observations suggest that VPA teratogenic actions may be mediated through changes in astrocyte generation during development. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 780–798, 2016  相似文献   
53.
54.
New N-4-piperazinyl derivatives of ciprofloxacin 2ag were prepared and tested for their cytotoxic activity. The primary in vitro one dose anticancer assay experienced promising cytotoxic activity against different cancer cell lines especially non-small cell lung cancer. Independently, compounds 2b, 2d, 2f and 2g showed anticancer activity against human non-small cell lung cancer A549 cells (IC50 = 14.8, 24.8, 23.6 and 20.7 μM, respectively) compared to the parent ciprofloxacin (IC50 >100 μM) and doxorubicin as a positive control (IC50 = 1 μM). The flow cytometric analysis for 2b showed dose dependent G2/M arrest in A549 cells. Also, 2b increased the expression of p53 and p21 and decreased the expression of cyclin B1 and Cdc2 proteins in A549 cells without any effect on the same proteins expression in WI-38 cells. Specific inhibition of p53 by pifithrin-α reversed the G2/M phase arrest induced by the 2b compound, suggesting contribution of p53 to increase. Taken together, 2b induced G2/M phase arrest via p53/p21 dependent pathway. The results indicate that 2b can be used as a lead compound for further development of new derivatives against non-small cell lung cancer.  相似文献   
55.
  1. Download : Download high-res image (93KB)
  2. Download : Download full-size image
Highlights
  • •microRNA-222 attenuates TGEV-induced mitochondrial dysfunction.
  • •microRNA-222 downregulates THBS1 and CD47.
  • •THBS1 is the target of microRNA-222 during TGEV infection.
  • •THBS1 and CD47 increase mitochondrial Ca2+ level and reduced mitochondrial membrane potential (MMP).
  相似文献   
56.
57.
Haemophilus parasuis (H. parasuis) is a common commensal in the upper respiratory tract of pigs, but causes Glässer's disease in stress conditions. To date, many studies focused on the immune evasion and virulence of H. parasuis; very few have focused on the role autophagy played in H. parasuis infection, particularly in porcine alveolar macrophages (PAMs). In this study, a PAM cell line, 3D4/21 cells were used to study the role of autophagy in H. parasuis infection. 3D4/21 cells tandemly expressing GFP, mCherry, and LC3 were infected with H. parasuis serovar 5 (Hps5). Western blot analysis and confocal and transmission electron microscopy showed that H. parasuis infection effectively induces autophagy. Using Hps strains of varying virulence (Hps4, Hps5, and Hps7) and UV‐inactivated Hps5, we demonstrated that autophagy is associated with the internalisation of living virulent strains into cells. In 3D4/21 cells pretreated with rapamycin and 3‐MA then infected by Hps4, Hps5, and Hps7, we demonstrated that autophagy affects invasion of Hparasuis in cells. AMPK signal results showed that Hps5 infection can upregulate the phosphorylation level of AMPK, which is consistent with the autophagy development. 3D4/21 cells pretreated with AICAR or Compound C then infected by Hps5 revealed that the autophagy induced by Hps5 infection is associated with the AMPK pathway. Our study contributes to the theoretical basis for the study of H. parasuis pathogenesis and development of novel drugs target for prevention Glässer's disease.  相似文献   
58.
59.
Phosphorylation of types III and IV intermediate filaments (IFs) is known to regulate their organization and function. Phosphorylation of the amino-terminal head domain sites on types III and IV IF proteins plays a key role in the assembly/disassembly of IF subunits into 10 nm filaments, and influences the phosphorylation of sites on the carboxyl-terminal tail domain. These phosphorylation events are largely under the control of second messenger-dependent protein kinases and provide the cells a mechanism to reorganize the IFs in response to the changes in second messenger levels. In mitotic cells, Cdk1, Rho kinase, PAK1 and Aurora-B kinase are believed to regulate vimentin and glial fibrillary acidic protein phosphorylation in a spatio-temporal manner. In neurons, the carboxyl-terminal tail domains of the NF-M and NF-H subunits of heteropolymeric neurofilaments (NFs) are highly phosphorylated by proline-directed protein kinases. The phosphorylation of carboxyl-terminal tail domains of NFs has been suspected to play roles in forming cross-bridges between NFs and microtubules, slowing axonal transport and promoting their integration into cytoskeleton lattice and, in doing so, to control axonal caliber and stabilize the axon. The role of IF phosphorylation in disease pathobiology is discussed.  相似文献   
60.
The terminally protected peptide Boc-Leu-Val-Phe-Phe-Ala-OMe bearing sequence similarity with the central hydrophobic cluster (CHC) of Alzheimer’s Aβ17–21 peptide self-assembles to produce amyloid-like straight unbranched fibrils from organic solvents. The fibrils readily bind with a physiological dye Congo red (CR) and exhibits green gold birefringence under polarized light, a characteristic feature of amyloid plaque obtained from many neurodegenerative diseases. FTIR spectroscopy and in silico energy minimization study shed some light on the antiparallel supramolecular β-sheet aggregation of the peptide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号