首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   521篇
  免费   20篇
  国内免费   16篇
  2023年   12篇
  2022年   10篇
  2021年   66篇
  2020年   73篇
  2019年   209篇
  2018年   14篇
  2017年   8篇
  2016年   27篇
  2015年   14篇
  2014年   25篇
  2013年   29篇
  2012年   15篇
  2011年   11篇
  2010年   9篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   8篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1979年   1篇
  1976年   3篇
排序方式: 共有557条查询结果,搜索用时 31 毫秒
31.
32.
Recent studies have shown that circulating microRNAs (miRNA) play a critical role in diagnosing acute coronary syndrome (ACS). This study aims to investigate the effect of miR-224 on atherosclerotic plaques forming and vascular remodeling in ACS and its relationship with TGF-β/Smad pathway. Myocardial infarction (MI) rat model was established and lentivirus vector of miR-224 inhibitor was prepared for investigating the effect of downregulated miR-224 on the contents of nitric oxide (NO) and endothelin-1 (ET-1), blood lipid levels and inflammatory factor levels in serum as well as the TGF-β/Smad pathway. The rats suffering from MI had decreased survival rates and exhibited reduced levels of NO, high-density lipoprotein cholesterol, and lumen diameter, and Smad7 messenger RNA (mRNA) and protein expression; while had significantly increased ratio of heart weight or body weight, levels of ET-1, inflammatory factors, blood lipid indexes, vascular remodeling indexes, collagen volume fraction, vulnerable atherosclerotic plaque area, VCAM-1 and MMP-2 protein expression, TGF-β, Smad2, Smad3, and Smad4 mRNA and protein expression. After inhibiting the TGF-β/Smad pathway, the rats suffering from MI showed notably opposite trend. In conclusion, downregulation of miR-224 expression promotes the formation of vulnerable atherosclerotic plaques and vascular remodeling in ACS through activation of the TGF-β/Smad pathway. Therefore, this study provides a new therapeutic target for ACS.  相似文献   
33.
34.
35.
36.
The mechanism of local inflammation and systemic injury in chronic periodontitis is complicated, in which and exosomes play an important role. In our study, we found that T helper cell 17 (Th17)/regulatory T cell (Treg) balance is destabilized in the peripheral blood of patients with periodontitis, with upregulated Th17 or downregulated Treg, respectively. Porphyromonas gingivalis lipopolysaccharide (LPS) was used to simulate the inflammatory microenvironment of chronic periodontitis. The exosomes were extracted from periodontal ligament stem cells (PDLSCs) in LPS-induced periodontitis environment, which inversely effected on CD4+ T cells under normal and inflammatory conditions. Furthermore, compared with exosomes from normal PDLSCs, lower expression of microRNA-155-5p (miR-155-5p) and higher expression of Sirtuin-1 (SIRT1) were observed in exosomes from LPS-stimulated PDLSCs. Exosomes from PDLSCs alleviated inflammatory microenvironment through Th17/Treg/miR-155-5p/SIRT1 regulatory network. This study aimed to find the “switching” factors that affected the further deterioration of periodontitis to maximally control the multiple downstream damage signal factors to further understand periodontitis and find new targets for its treatment.  相似文献   
37.
During the human bone formation, the event of osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs) is vital, and recent evidence has emphasized the important role of microRNAs (miRNAs) in osteogenic differentiation of hBMSCs. This study aims to examine the potential effects of miR-200c in osteogenic differentiation of hBMSCs and understand their underlying mechanisms. HBMSCs were obtained via human bone marrow. During osteogenic induction and differentiation, cells were transfected with different plasmids with the intention of investigating the roles of miR-200c on osteogenic differentiation, calcium salt deposition, alkaline-phosphatase (ALP) activity, mineralized nodule formation, osteocalcin (OCN) content, and proliferation of osteoblasts. Following transfection, dual luciferase reporter gene assay was conducted so as to explore the correlation between miR-200c and Myd88. Moreover, the AKT/β-Catenin signaling pathway was blocked with an AKT/β-Catenin inhibitor, AKTi, to investigate its involvement. The hBMSCs were successfully isolated from human bone marrow. Myd88 was determined as a target gene of miR-200c. Gain and loss-of-function assays confirmed that overexpression of miR-200c, or silencing of Myd88 promoted osteogenic differentiation, increased calcium salt deposition, ALP activity, mineralized nodule formation, and enhanced the proliferation of osteoblasts following osteogenic differentiation of hBMSCs. Meanwhile, the downregulation of miR-200c has been shown to have the opposite effect. Furthermore, these findings showed that the miR-200c overexpression activated the AKT/β-Catenin signaling pathway by targeting Myd88. To sum up, the miR-200c upregulation induces osteogenic differentiation of hBMSCs by activating the AKT/β-Catenin signaling pathway via the inhibition of Myd88, providing a target for treatment of bone repair.  相似文献   
38.
Emerging evidence indicates that microRNAs play an important role in neural remodeling, including neurite growth, after acute spinal cord injury (ASCI). This study aims to identify the mechanism by which miR-92b-3p regulates neurite growth in vivo and in vitro. Adult Sprague–Dawley rats were selected to establish the ASCI model, and the expressions of miR-92b-3p and phosphate and tensin homolog deleted on chromosome ten (PTEN) were quantified at different time points. The interaction between miR-92b-3p and PTEN was further detected in the PC12 cell line and dual-luciferase reporter assay. Neurite growth proteins (GAP43 and NF-200) were assessed by western blotting after miR-92b-3p mimics treatment. The PTEN/AKT pathway-related proteins and their roles in miR-92b-3p regulation were also identified using western blotting and immunofluorescence in vitro through LY294002, an AKT inhibitor. The effect of miR-92b-3p was further determined in vivo according to the Basso-Beattie-Bresnahan (BBB) Scale and GAP43 and NF-200 expressions. miR-92b-3p was downregulated after ASCI, while PTEN showed a simultaneous opposing trend. Overexpression of miR-92b-3p downregulated PTEN expression and promoted phosphorylation of AKT, as well as the expression of GAP43 and NF-200 in PC12 cells. Furthermore, the dual-luciferase reporter assay revealed that miR-92b-3p exerted its effect by targeting PTEN's 3ʹ-untranslated regions and that this effect could be counteracted by AKT phosphorylation blocker LY294002 through western blotting and immunofluorescence. Moreover, miR-92b-3p could also improve the BBB scale as well as GAP43 and NF-200 expression levels in vivo. Collectively, these results indicate that miR-92b-3p promotes neurite growth and functional recovery through the PTEN/AKT pathway in ASCI.  相似文献   
39.
40.
Tumor suppressor long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) exists in various cancers. Nonetheless, the functions of lncRNA MEG3 in choriocarcinoma (CC) are still not well studied. We explored the effects of lncRNA MEG3 on human CC JEG-3 and BeWo cells. lncRNA MEG3 was overexpressed, and the effects of lncRNA MEG3 on cell viability, proliferation, apoptosis, migration, and invasion were assessed by the cell counting kit-8 assay, western blot analysis, flow cytometry (plus western blot analysis), and transwell assay (plus western blot analysis), respectively. Then, the expression level of miR-211 was detected by real-time quantitative polymerase chain reaction. After that, the effects of dysregulated microRNA-211 (miR-211) with overexpressing lncRNA MEG3 on JEG-3 cells and BeWo cells were testified. Western blot analysis was used to study the involvements of the signaling pathways in the lncRNA MEG3-associated modulation. We found that lncRNA MEG3 upregulation reduced cell viability, inhibited proliferation, migration and invasion, and promoted apoptosis. Expression of miR-211 was upregulated after lncRNA MEG3 overexpression. Effects of lncRNA MEG3 overexpression were augmented by miR-211 overexpression, while they were declined by miR-211 silencing. Phosphorylated levels of PI3K, AKT, and AMP-activated protein kinase (AMPK) were decreased by lncRNA MEG3 overexpression via regulation of miR-211. To sum up, lncRNA MEG3 could repress proliferation, migration and invasion, and promote apoptosis of JEG-3 and BeWo cells through upregulating miR-211. The PI3K/AKT and AMPK pathways were inhibited by lncRNA MEG3 overexpression via regulation of miR-211.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号