首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2317篇
  免费   161篇
  国内免费   122篇
  2600篇
  2024年   24篇
  2023年   80篇
  2022年   124篇
  2021年   313篇
  2020年   352篇
  2019年   604篇
  2018年   102篇
  2017年   68篇
  2016年   66篇
  2015年   66篇
  2014年   203篇
  2013年   173篇
  2012年   75篇
  2011年   64篇
  2010年   48篇
  2009年   36篇
  2008年   29篇
  2007年   25篇
  2006年   20篇
  2005年   9篇
  2004年   3篇
  2003年   6篇
  2001年   9篇
  2000年   10篇
  1999年   17篇
  1998年   12篇
  1997年   14篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1984年   5篇
  1983年   8篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有2600条查询结果,搜索用时 15 毫秒
11.
The long noncoding RNA (lncRNA) OIP5-AS1 has been considered to promote the growth and metastasis of many human tumors. However, the role of OIP5-AS1 in melanoma has not been reported. In this study, we found that OIP5-AS1 levels were significantly elevated in melanoma tissue and that high OIP5-AS1 expression was an independent risk factor for the poor survival of patients with melanoma. miR-217 suppressed glutamine catabolism in melanoma cells by targeting glutaminase (GLS), the rate-limiting enzyme of glutamine catabolism. We also demonstrated that OIP5-AS1 acted as a sponge of miR-217 to upregulate GLS expression, thus promoting glutamine catabolism and melanoma growth. Overall, this result elucidates a new mechanism for OIP5-AS1 in metabolism in melanoma and provides a potential therapeutic target for patients with melanoma.  相似文献   
12.
Long noncoding RNAs (lncRNA) have been recognized as significant regulators in the progression of atherosclerosis (AS). Oxidized low-density lipoprotein (ox-LDL) can induce macrophage inflammation and oxidative stress, that serves important roles in AS. However, the exact function of lncRNA NEAT1 and its possible molecular mechanism in AS remain unclear. Here, we concentrated on the roles and molecular mechanisms of NEAT1 in AS development. In our current study, we observed that NEAT1 was elevated by ox-LDL in a dose-dependent and time-dependent manner. RAW264.7 cell survival was greatly enhanced, and cell apoptosis was significantly inhibited by LV-shNEAT1 transfection. In addition, knockdown of NEAT1 in RAW264.7 cells repressed CD36 expression and foam cell formation while NEAT1 overexpression shown an opposite process. Moreover, NEAT1 downregulation inhibited inflammation molecules including IL-6, IL-1β, and TNF-α. Meanwhile, silencing of NEAT1 can also suppress reactive oxygen species (ROS) and malondialdehyde (MDA) levels with an enhancement of superoxide dismutase (SOD) activity in RAW264.7 cells. MicroRNAs are some short RNAs, and they can regulate multiple biological functions in many diseases including AS. Here, we found that miR-128 expression was remarkably decreased in ox-LDL-incubated RAW264.7 cells. Interestingly, miR-128 mimics was able to reverse AS-correlated events induced by overexpression of NEAT1. By using bioinformatics analysis, miR-128 was predicted as a target of NEAT1 and the correlation between them was validated in our study. Taken these together, it was implied that NEAT1 participated in ox-LDL-induced inflammation and oxidative stress in AS development through sponging miR-128.  相似文献   
13.
Hypoxia leads to significant cellular stress that has diverse pathological consequences such as cardiovascular diseases and cancers. MicroRNAs (miRNAs) are one of regulators of the adaptive pathway in hypoxia. We identified a hypoxia-induced miRNA, miR-34c, that was significantly upregulated in hypoxic human umbilical cord vein endothelial cells (HUVECs) and in murine blood vessels on day 3 of hindlimb ischemia (HLI). miR-34c directly inhibited BCL2 expression, acting as a toggle switch between apoptosis and autophagy in vitro and in vivo. BCL2 repression by miR-34c activated autophagy, which was evaluated by the expression of LC3-II. Overexpression of miR-34c inhibited apoptosis in HUVEC as well as in a murine model of HLI, and increased cell viability in HUVEC. Importantly, the number of viable cells in the blood vessels following HLI was increased by miR-34c overexpression. Collectively, our findings show that miR-34c plays a protective role in hypoxia, suggesting a novel therapeutic target for hypoxic and ischemic diseases in the blood vessels.  相似文献   
14.
Acute lung injury (ALI) is a severe pulmonary disease that causes a high number of fatalities worldwide. Studies have shown that FoxA1 expression is upregulated during ALI and may play an important role in ALI by promoting the apoptosis of alveolar type II epithelial cells. However, the mechanism of FoxA1 overexpression in ALI is unclear. In this study, an in vivo murine model of ALI and alveolar type II epithelial cells injury was induced using lipopolysaccharide (LPS). LPS upregulated FoxA1 in the lung tissue of the in vivo ALI model and in LPS-challenged type II epithelial cells. In contrast, miR-17 was significantly downregulated in these models. After miR-17 antagomir injection, the expression of FoxA1 was significantly increased in ALI mice. MiR-17 mimics could significantly inhibit FoxA1 mRNA and protein expression, whereas the miR-17 inhibitor could significantly increase FoxA1 mRNA and protein expression in LPS-induced type II epithelial cells. Thus, our results suggest that the downregulation of miR-17 expression could lead to FoxA1 overexpression in ALI.  相似文献   
15.
Microtubule-associated proteins regulate microtubule (MT) dynamics spatially and temporally, which is essential for proper formation of the bipolar mitotic spindle. The XMAP215 family is comprised of conserved microtubule-associated proteins that use an array of tubulin-binding tumor overexpressed gene (TOG) domains, consisting of six (A–F) Huntingtin, elongation factor 3, protein phosphatase 2A, target of rapamycin (HEAT) repeats, to robustly increase MT plus-end polymerization rates. Recent work showed that TOG domains have differentially conserved architectures across the array, with implications for position-dependent TOG domain tubulin binding activities and function within the XMAP215 MT polymerization mechanism. Although TOG domains 1, 2, and 4 are well described, structural and mechanistic information characterizing TOG domains 3 and 5 is outstanding. Here, we present the structure and characterization of Drosophila melanogaster Mini spindles (Msps) TOG3. Msps TOG3 has two unique features as follows: the first is a C-terminal tail that stabilizes the ultimate four HEAT repeats (HRs), and the second is a unique architecture in HR B. Structural alignments of TOG3 with other TOG domain structures show that the architecture of TOG3 is most similar to TOG domains 1 and 2 and diverges from TOG4. Docking TOG3 onto recently solved Stu2 TOG1· and TOG2·tubulin complex structures suggests that TOG3 uses similarly conserved tubulin-binding intra-HEAT loop residues to engage α- and β-tubulin. This indicates that TOG3 has maintained a TOG1- and TOG2-like TOG-tubulin binding mode despite structural divergence. The similarity of TOG domains 1–3 and the divergence of TOG4 suggest that a TOG domain array with polarized structural diversity may play a key mechanistic role in XMAP215-dependent MT polymerization activity.  相似文献   
16.
17.
Colorectal cancer is one of the most common and leading malignancies globally. Long noncoding RNAs (lncRNAs) function as potentially critical regulator in colorectal cancer. LINC01234, a novel lncRNA in tumor biology, regulates the progression of various tumors. However, the tumorigenic mechanism of LINC01234 in colorectal cancer is still unclear. This study was performed with the aim to prospectively investigate clinical significance, effect, and mechanism of lncRNA LINC01234 in colorectal cancer. First, we found that LINC01234, localized in the cytoplasm, was increased in both colorectal cancer cell lines and tissues. Subsequent functional assays suggested LINC01234 knockdown suppressed cell proliferation, migration, and invasion of colorectal cancer cells, while blocked cell cycle and induced cell apoptosis. Moreover, we identified that miR-1284 was target of LINC01234, we further demonstrated a negative correlation with LINC01234 in colorectal cancer tissues and cells. Furthermore, miR-1284 targeted and suppressed tumor necrosis factor receptor–associated factor 6 (TRAF6). Loss-of-function assay revealed that LINC01234 silencing suppressed colorectal cancer progression through inhibition of miR-1284. In vivo subcutaneous xenotransplanted tumor model indicated LINC01234 knockdown inhibited in vivo tumorigenic ability of colorectal cancer via downregulation of TRAF6. Collectively, this study clarified the biological significance of LINC01234/miR-1284/TRAF6 axis in colorectal cancer progression, providing insights into LINC01234 as novel potential therapeutic target for colorectal cancer therapeutic from bench to clinic.  相似文献   
18.
Clear cell renal cell carcinoma (ccRCC) is a primary kidney cancer with high aggressive phenotype and extremely poor prognosis. Accumulating evidence suggests that circular RNAs (circRNAs) play pivotal roles in the occurrence and development of various human cancers. However, the expression, clinical significance and regulatory role of circRNAs in ccRCC remain largely unclear. Here we report that circDVL1 to be reduced in the serums and tissues from ccRCC patients, and to negatively correlate with ccRCC malignant features. Overexpression of circDVL1 inhibits proliferation, induces G1/S arrest, triggers apoptosis, and reduces migration and invasion in different ccRCC cells in vitro. Correspondingly, circDVL1 overexpression suppresses ccRCC tumorigenicity in a mouse xenograft model. Mechanistically, circDVL1 serves as a sponge for oncogenic miR-412-3p, thereby preventing miR-412-3p-mediated repression of its target protocadherin 7 (PCDH7) in ccRCC cells. Collectively, our results demonstrate that circDVL1 exerts tumor-suppressive function during ccRCC progression through circDVL1/miR-412-3p/PCDH7 axis, and suggest that circDVL1 could be a novel diagnostic and prognositc marker and therapeutic target for ccRCC.  相似文献   
19.
20.
木质素作为木材的主要组成成分,通常是由3种单体聚合而成,在其生物合成过程中,共有10个酶家族参与负责将苯丙胺酸转化为单体木质素,其中C3H是在对-香豆酰辅酶A(p-coumaroyl CoA)到咖啡酰辅酶A(caffeoyl CoA)的羟基化过程和G/S单体形成中的关键控制酶类,探究PagC3H3基因表达模式,对于进一步了解该基因功能具有重要意义。该研究通过定量PCR对PagC3H3基因的组织特异性表达进行分析;克隆得到了长度为2 035 bp的PagC3H3的启动子序列,预测含有多个顺式作用元件;同时,将获得的PagC3H3的启动子序列构建植物表达载体pBI121-PagC3H3pro::GUS,进行拟南芥瞬时转化,结果显示PagC3H3基因在84K杨的根、中部茎节和基部茎节中的表达量较高;瞬时转化拟南芥,GUS染色表明:在下胚轴和根中GUS活性较强,由此推测PagC3H3基因在木质素合成过程中发挥作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号