首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7235篇
  免费   549篇
  国内免费   331篇
  8115篇
  2024年   31篇
  2023年   153篇
  2022年   254篇
  2021年   490篇
  2020年   517篇
  2019年   833篇
  2018年   352篇
  2017年   194篇
  2016年   193篇
  2015年   204篇
  2014年   548篇
  2013年   520篇
  2012年   333篇
  2011年   359篇
  2010年   239篇
  2009年   272篇
  2008年   256篇
  2007年   279篇
  2006年   216篇
  2005年   176篇
  2004年   149篇
  2003年   138篇
  2002年   120篇
  2001年   78篇
  2000年   66篇
  1999年   65篇
  1998年   81篇
  1997年   78篇
  1996年   46篇
  1995年   48篇
  1994年   42篇
  1993年   36篇
  1992年   44篇
  1991年   41篇
  1990年   31篇
  1989年   27篇
  1988年   25篇
  1987年   28篇
  1986年   23篇
  1985年   30篇
  1984年   58篇
  1983年   52篇
  1982年   66篇
  1981年   53篇
  1980年   47篇
  1979年   51篇
  1978年   35篇
  1977年   40篇
  1976年   26篇
  1974年   22篇
排序方式: 共有8115条查询结果,搜索用时 0 毫秒
991.
Xia W  Fu W  Cai L  Kong H  Cai X  Liu J  Wang Y  Zou M  Xu D 《Gene》2012,504(2):233-237
Angiogenin (Ang) is known to induce cell proliferation and inhibit apoptosis by cellular signaling pathways and by direct nuclear functions of Ang, but the mechanism of action for Ang is not yet clear. The aim of present study was to identify novel binding partner of Ang and to explore the underlying mechanism. With the use of yeast two-hybrid screening system, Ang was used as the bait to screen human fetal hepatic cDNA library for interacting proteins. Four and a half LIM domains 3 (FHL3) was identified as a novel Ang binding partner. The interaction between Ang and the full length FHL3 was further confirmed by yeast two-hybrid assay, co-immunoprecipitation and GST pull-down assays. Furthermore, FHL3 was required for Ang-mediated HeLa cell proliferation and nuclear translocation of Ang. These findings suggest that the interaction between Ang and FHL3 may provide some clues to the mechanisms of Ang-regulated cell growth and apoptosis.  相似文献   
992.
993.
The emerging role of microRNAs (miRNAs) have been deeply explored in multiple diseases including neuropathic pain. miR-194 was widely reported to be a tumor suppressor and was related to the inflammatory response. The critical role of neuroinflammation on neuropathic pain leads to a thinking about the relationship between miR-194 and neuropathic pain. However, the function of miR-194 in neuropathic pain remains unknown. This study was aimed to explore the relationship between miR-194 and neuropathic pain progression by chronic sciatic nerve injury (CCI). miR-194 abnormally downregulated in the CCI model rat and its overexpression significantly alleviates neuroinflammation in vivo. We predict Forkhead box protein A1 (FOXA1) as a direct target of miR-194, whose restoration can markedly reverse the effects of miR-194 on neuropathic pain. Overall, our study demonstrated a novel mechanism of neuropathic pain progression that miR-194 alleviates neuropathic pain via targeting FOXA1 and preventing neuroinflammation by downregulating inflammatory cytokines containing cyclooxygenase 2, interleukin 6 (IL-6), and IL-10 in vivo, which can be reversed by the overexpression of FOXA1.  相似文献   
994.
The inflammatory microenvironment in the joints is one of the critical issues during osteoarthritis (OA) and also the main factor that may aggravate symptoms. Under inflammatory microenvironment, M1 macrophages are activated and produce large numbers of proinflammatory mediators, leading to the production of degradative enzymes, the disturbance of chondrocyte apoptosis and cartilage catabolic processes, and finally the deterioration of OA. In the present study, we reveal that the overexpression of osteopontin (OPN), a cytokine, and a matrix protein involved in arthritis and chondrocyte apoptosis in OA, could exacerbate the inflammatory microenvironment in OA via promoting the production of proinflammation cytokines and the levels of degradative enzymes in M1 macrophages, therefore, enhancing the cytotoxicity of M1 macrophage on chondrocytes. XIST expression significantly increases in OA tissue specimens. XIST serves as a competing endogenous RNA for miR-376c-5p to compete with OPN for miR-376c-5p binding, thus counteracting miR-376c-5p-mediated OPN suppression. XIST knockdown could improve the inflammatory microenvironment in OA via acting on M1 macrophages, subsequently affecting the apoptosis of cocultured chondrocytes. miR-376c-5p inhibition exerts an opposing effect on M1 macrophages and cocultured chondrocytes, as well as significantly reverses the effect of XIST knockdown. As a further confirmation, XIST and OPN mRNA expression significantly increased in OA tissues and was positively correlated in tissue samples. In summary, we provide a novel mechanism of macrophages and the inflammatory microenvironment affecting chondrocyte apoptosis. XIST and OPN might be potential targets for OA treatment, which needs further in vivo experimental confirmation.  相似文献   
995.
Breast cancer is a common malignancy that is highly lethal with poor survival rates and immature therapeutics that urgently needs more effective and efficient therapies. MicroRNAs are intrinsically involved in different cancer remedies, but their mechanism in breast cancer has not been elucidated for prospective treatment. The function and mechanism of microRNA-188-5p (miR-188) have not been thoroughly investigated in breast cancer. In our study, we found that the expression of miR-188 in breast cancer tissues was obviously reduced. Our findings also revealed the abnormal overexpression of miR-188 in 4T1 and MCF-7 cells significantly suppressed cell proliferation and migration and also enhanced apoptosis. miR-188 induced cell cycle arrest in the G1 phase. To illuminate the molecular mechanism of miR-188, Rap2c was screened as a single target gene by bioinformatics database analysis and was further confirmed by dual-luciferase assay. Moreover, Rap2c was found to be a vital molecular switch for the mitogen-activated protein kinase signaling pathway in tumor progression by decreasing apoptosis and promoting proliferation and migration. In conclusion, our results revealed that miR-188 is a cancer progression suppressor and a promising future target for breast cancer therapy.  相似文献   
996.
Many studies have verified that microRNAs contribute a lot to neuropathic pain progression. Furthermore, nerve-related inflammatory cytokines play vital roles in neuropathic pain progression. miR-183 has been identified to have a common relationship with multiple pathological diseases. However, the potential effects of miR-183 in the process of neuropathic pain remain undetermined. Therefore, we performed the current study with the purpose of finding the functions of miR-183 in neuropathic pain progression using a chronic sciatic nerve injury (CCI) rat model. We demonstrated that miR-183 expression levels were evidently reduced in CCI rats in contrast with the control group. Overexpression of miR-183 produced significant relief of mechanical hyperalgesia, as well as thermal hyperalgesia in CCI rats. Furthermore, neuropathic pain-correlated inflammatory cytokine expression levels containing interleukin-6 (IL-6) and interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2) were obviously inhibited by upregulation of miR-183. Meanwhile, dual-luciferase reporter assays showed MAP3K4 was a direct downstream gene of miR-183. The expression levels of MAP3K4 were modulated by the increased miR-183 negatively, which lead to the downregulation of IL-6, IL-1β, and COX-2, and then reduced neuropathic pain progression, respectively. Overall, our study pointed out that miR-183 was a part of the negative regulator which could relieve neuropathic pain by targeting MAP3K4. Thus it may provide a new clinical treatment for neuropathic pain patients clinical therapy.  相似文献   
997.
This study was designed to understand better if and how juvenile sporophytes of Macrocystis pyrifera can photoacclimate to high-light conditions when transplanted from 10 to 3 meters over 7 d. Acclimation of adult sporophytes to light regimes in the bathymetric gradient has been extensively documented. It primarily depends on photoacclimation and translocation of resources among blades. Among other physiological differences, juvenile sporophytes of M. pyrifera lack the structural complexity shown by adults. As such, juveniles may primarily depend on their photoacclimation capacities to maintain productivity and even avoid mortality under changing light regimes. However, little is known about how these mechanisms operate in young individuals. The capacity of sporophytes to photoacclimate was assessed by examining changes in their photosynthetic performance, pigment content, and bio-optical properties of the blade. Sporophytes nutritional status and oxidative damage were also determined. Results showed that juvenile sporophytes transplanted to shallow water were able to regulate light harvesting by reducing pigment concentration, and thus, absorptance and photosynthetic efficiency. Also, shallow-water sporophytes notably enhanced the dissipation of light energy as heat (NPQ) as a photoprotective mechanism. Generally, these adjustments allowed sporophytes to manage the absorption and utilization of light energy, hence reducing the potential for photo-oxidative damage. Furthermore, no substantial changes were found in the internal reserves (i.e., soluble carbohydrates and nitrogen) of these sporophytes. To our knowledge, these results are the first to provide robust evidence of photoprotective and photoacclimation strategies in juveniles of M. pyrifera, allowing them to restrict or avoid photodamage during shallow-water cultivation.  相似文献   
998.
Lipid droplets (LDs) are ubiquitous cellular organelles for lipid storage which are composed of a neutral lipid core bounded by a protein decorated phospholipid monolayer. Although lipid storage is their most obvious function, LDs are far from inert as they participate in maintaining lipid homeostasis through lipid synthesis, metabolism, and transportation. Furthermore, they are involved in cell signaling and other molecular events closely associated with human disease such as dyslipidemia, obesity, lipodystrophy, diabetes, fatty liver, atherosclerosis, and others. The last decade has seen a great increase in the attention paid to LD biology. Regardless, many fundamental features of LD biology remain obscure. In this review, we will discuss key aspects of LD biology including their biogenesis, growth and regression. We will also summarize the current knowledge about the role LDs play in human disease, especially from the perspective of the dynamics of the associated proteins. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.  相似文献   
999.

Background

Handgrip strength (HS) and peak oxygen consumption (Vo2peak) are powerful predictors of cardiovascular risk, although it is unknown which of the two variables is the better predictor.

Aim

The objective of the following study was to relate HS and Vo2peak to cardiovascular risk markers in older Chilean women.

Methods

Physically active adult women (n = 51; age, 69 ± 4.7 years) participated in this study. The HS and Vo2peak were evaluated and related to the anthropometric variables of body mass, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist ratio (WR), and waist height ratio (WHR), as well as with the cardiovascular variables systolic (SBP) and diastolic (DBP) and cardiac recovery in one minute (RHR1). A multilinear regression model was used for the analysis of the associated variables (P < .05).

Results

The cardiovascular risk markers associated (P < .05) with the handgrip strength of the dominant limb (HSDL) were body mass, BMI, WR, and WHR. The handgrip strength of the non-dominant limb (HSNDL) was associated with body mass. Vo2peak was associated with body mass, BMI, HC and RHR1. The multilinear regression model showed a value of r = 0.43 in HSDL, r = 0.39 in HSNDL and r = 0.69 in peak Vo2.

Conclusion

Although HS and Vo2peak were related to cardiovascular risk markers, Vo2peak offers greater associative power with these cardiovascular risk factors.  相似文献   
1000.
The expression of the chemorepellent Sema3a is inversely related to sympathetic innervation. We investigated whether overexpression of Sema3a in the myocardial infarction (MI) border zone could attenuate sympathetic hyper‐innervation and decrease the vulnerability to malignant ventricular tachyarrhythmia (VT) in rats. Survived MI rats were randomized to phosphate buffered saline (PBS, n = 12); mock lentivirus (MLV, n = 13) and lentivirus‐mediated overexpression of Sema3a (SLV, n = 13) groups. Sham‐operated rats served as control group (CON, n = 20). Cardiac function and electrophysiological study (PES) were performed at 1 week later. Blood and tissue samples were collected for histological analysis, epinephrine (EPI), growth‐associated factor 43 (GAP43) and tyrosine hydroxylase (TH) measurements. QTc intervals were significantly shorter in SLV group than in PBS and MLV groups (168.6 ± 7.8 vs. 178.1 ± 9.5 and 180.9 ± 8.2 ms, all P < 0.01). Inducibility of VT by PES was significantly lower in the SLV group [30.8% (4/13)] than in PBS [66.7% (8/12)] and MLV [61.5% (8/13)] groups (P < 0.05). mRNA and protein expressions of Sema3a were significantly higher and the protein expression of GAP43 and TH was significantly lower at 7 days after transduction in SLV group compared with PBS, MLV and CON groups. Myocardial EPI in the border zone was also significantly lower in SLV group than in PBS and MLV group (8.73 ± 1.30 vs. 11.94 ± 1.71 and 12.24 ± 1.54 μg/g protein, P < 0.001). Overexpression of Sema3a in MI border zone could reduce the inducibility of ventricular arrhythmias by reducing sympathetic hyper‐reinnervation after infarction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号