首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2064篇
  免费   160篇
  国内免费   109篇
  2024年   15篇
  2023年   71篇
  2022年   109篇
  2021年   306篇
  2020年   345篇
  2019年   593篇
  2018年   100篇
  2017年   67篇
  2016年   56篇
  2015年   64篇
  2014年   196篇
  2013年   163篇
  2012年   75篇
  2011年   64篇
  2010年   46篇
  2009年   24篇
  2008年   13篇
  2007年   7篇
  2006年   4篇
  2005年   1篇
  2001年   1篇
  1996年   2篇
  1995年   1篇
  1991年   1篇
  1989年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1977年   1篇
排序方式: 共有2333条查询结果,搜索用时 146 毫秒
71.
Cervical cancer holds one of the highest morbidity and mortality in various types of cancers. It even leads to the most number of cancer-related deaths of women. A lot of research has indicated that the anomalous expression of long noncoding RNAs (lncRNAs) would induce carcinogenesis and is associated with poor prognosis of patients with cancer. However, the function and mechanism of many lncRNAs still call for further research. Tumor Protein P73 Antisense RNA 1 (TP73-AS1) is no exception. LncRNA TP73-AS1 has been found to promote cancer progressions in various cancers. It is upregulated in cervical cancer cells. The proliferation and migration ability of cervical cancer cells can also be boosted by TP73-AS1 in return. Meanwhile, miRNA-329-3p is downregulated in cervical cancer cells and could bind with both TP73-AS1 and ADP Ribosylation Factor 1 (ARF1). TP73-AS1 inhibited miR-329-3p expression while miR-329-3p inhibited ARF1 expression. More importantly, TP73-AS1 can positively regulate ARF1 expression. Based on all these experiments, TP73-AS1 regulates ARF1 expression by competitively binding with miR-329-3p, thus regulating cervical cancer progression. Further rescue assays confirmed TP73-AS1 regulates cervical cell proliferation and migration via miR-329-3p/ARF1. TP73-AS1 might serve as a novel regulator in cervical cancer.  相似文献   
72.
73.
Pancreatic stellate cells (PSCs) secrete various factors, which can influence the β-cell function. The identification of stellate cell infiltration into the islets in pancreatic diseases suggests possible existence of cross-talk between these cells. To elucidate the influence of PSCs on β-cell function, mouse PSCs were cocultured with Min6 cells using the Transwell inserts. Glucose-stimulated insulin secretion from Min6 cells in response to PSCs was quantified by enzyme-linked immunosorbent assay and insulin gene expression was measured by quantitative polymerase chain reaction. Upon cytometric identification of IL6 in PSC culture supernatants, Min6 cells were cultured with IL6 to assess its influence on the insulin secretion and gene expression. PLC-IP3 pathway inhibitors were added in the cocultures, to determine the influence of PSC-secreted IL6 on Glucose-stimulated insulin secretion from Min6 cells. Increased insulin secretion with a concomitant decrease in total insulin content was noticed in PSC-cocultured Min6 cells. Although increased GSIS was noted from IL6-treated Min6 cells, no change in the total insulin content was noted. Coculture of Min6 cells with PSCs or their exposure to IL6 did not alter either the expression of β-cell-specific genes or that of miRNA-375. PSC-cocultured Min6 cells, in the presence of PLC-IP3 pathway inhibitors (U73122, Neomycin, and Xestospongin C), did not revoke the observed increase in GSIS. In conclusion, the obtained results indicate that augmented insulin secretion from Min6 cells in response to PSC secretions is independent of IL6-mediated PLC-IP3 pathway.  相似文献   
74.
75.
Osteosarcoma (OS) is a highly aggressive bone tumor with a poor prognosis. MicroRNAs are revealed to exerts essential roles in the carcinogenesis and tumor invasion of OS. But, the function of miR-1296-5p and its related mechanism in OS progression have not yet been studied. This study discovered the levels of miR-1296-5p in OS and corresponding noncancerous tissues, and we demonstrated that miR-1296-5p level was markedly downregulated in tumor specimens as compared with nontumor tissues. In addition, we discovered that miR-1296-5p was also underexpressed in OS cells compared with the hFOB1.19 osteoblast cells. Interestingly, the reduced expression of miR-1296-5p was confirmed to associated with large tumor size, advanced tumor stages, and distance metastasis, respectively. Patients with OS low-expressing miR-1296-5p showed a prominent shorter survival. In addition, gain-of-function assays verified that miR-1296-5p overexpression remarkably repressed OS cell proliferation, migration, and invasion. Conversely, depletion of miR-1296-5p facilitated the growth and mobility of OS cells. Notably, miR-1296-5p inversely modulated notch receptor 2 (NOTCH2) in OS cells. The level of NOTCH2 messenger RNA was negatively correlated with miR-1296-5p level in OS samples. NOTCH2 knockdown markedly suppressed the abilities of MG-63 cell proliferation and mobility. More importantly, the restoration of NOTCH2 prominently rescued miR-1296-5p-induced tumor-suppressive effects on MG-63 cells. In conclusion, our study identified the reduced expression of miR-1296-5p, which contributed to OS progression. miR-1296-5p might be a promising prognostic marker and therapeutic target in OS.  相似文献   
76.
77.
Hepatocellular carcinoma (HCC) is most prevalent tumor in liver and one of the most fatal cancers in the world. Long noncoding RNAs (lncRNAs) have been accepted as important regulators in carcinomas. But there are still many lncRNAs including DLGAP1-AS1 unannotated in HCC. First of all, GEPIA suggested that DLGAP1-AS1 presented high expression in HCC tissue samples relative to the normal tissues. Besides, overexpression of DLGAP1-AS1 was also proved in HCC cell lines. Moreover, DLGAP1-AS1 knockdown efficiently suppressed cell proliferation in HCC. Interestingly, miR-486-5p was predicted and validated to interact with DLGAP1-AS1, while the level of miR-486-5p was significantly increased In HCC after DLGAP1-AS1 knockdown. Moreover, we uncovered that ectopic expression of miR-486-5p induced suppression on HCC cell proliferation and that miR-486-5p inhibition offset the effect of DLGAP1-AS1 silence on HCC cell proliferation and apoptosis. Furthermore, H3F3B was identified as target of miR-486-5p and was therefore positively regulated by DLGAP1-AS1 in HCC. Of note, H3F3B upregulation partly revived the declined cell proliferative capacity in response to DLGAP1-AS1 knockdown. To conclude, DLGAP1-AS1 exerted its oncogenic role in HCC via miR-486-5p/H3F3B axis. Our new findings provided novel theoretical basis for discovery of therapeutic targets of HCC.  相似文献   
78.
In spite of the achievement in treatment, the gastric cancer (GC) mortality still remains high. MicroRNAs (miRNAs) are a group of small noncoding RNAs that play a crucial part in tumor progression. In this study, we explored the expression and function of microRNA-501-5p (miR-501-5p) in GC cell lines. Quantitative real-time polymerase chain reaction assay results suggested that miR-501-5p was significantly upregulated in GC tissues and cell lines. And, the Cell Counting Kit-8 colony formation and cell migration assay results showed that the downregulation of miR-501-5p decreased GC cell proliferation and migration. Besides that, we found that GC cell cycle was arrested in G2 phase and cell apoptosis rate was increased by silencing the expression of miR-501-5p in GC cell lines using the flow cytometry. We also found that miR-501-5p could directly target lysophosphatidic acid receptor 1 (LPAR1) and negatively regulate LPAR1 expression in GC cell lines by performing dual-luciferase reporter gene assay and Western blot analysis. And, LPAR1 was significantly downregulated in GC tissues and inversely correlated with miR-501-5p expression. Furthermore, LPAR1 downregulation promoted cell proliferation and migration, which were attenuated by cotransfection of miR-501-5p inhibitor in GC cells. In conclusion, miR-501-5p can promote GC cell proliferation and migration by targeting and downregulating LPAR1. miR-501-5p/LPAR1 may become a potential therapeutic target for GC treatment.  相似文献   
79.
Long noncoding RNAs (lncRNAs) are found to be aberrantly expressed and pose significant impacts in colorectal cancer (CRC), the most prevalent type malignancy in the gastrointestinal tract. This study aimed to find out the regulation of lncRNA EIF3J antisense RNA 1 (EIF3J-AS1) on CRC progression. Expressions of EIF3J-AS1, microRNA-3163 (miR-3163), and Yes-associated protein 1 (YAP1) in tissues and cells were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Association of EIF3J-AS1 with CRC prognosis was analyzed through the online bioinformatics tool GEPIA. The biological function of EIF3J-AS1 in CRC was investigated by Cell Counting Kit-8, colony formation, caspase-3 activity, and TUNEL staining. Competitive endogenous RNA (ceRNA) network of EIF3J-AS1/miR-3163/YAP1 was determined by luciferase reporter and RNA immunoprecipitation assays. Results showed that EIF3J-AS1 was upregulated in CRC tissues and cell lines, indicating poor prognosis of CRC patients. The silence of EIF3J-AS1 led to reduced proliferation and facilitated apoptosis of CRC cells. Mechanistcally, EIF3J-AS1 was upregulated by cAMP-response element-binding protein-binding protein-mediated histone H3 on lysine 27 acetylation (H3K27ac) at the promoter region, and EIF3J-AS1 upregulated YAP1 expression through sponging miR-3163 in CRC cells. In conclusion, we first found that H3K27 acetylation-induced lncRNA EIF3J-AS1 improved proliferation and impeded apoptosis of colorectal cancer through the miR-3163/YAP1 axis, which might potentially provide a novel molecular-targeted strategy for CRC treatment.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号