首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2032篇
  免费   151篇
  国内免费   109篇
  2024年   15篇
  2023年   70篇
  2022年   109篇
  2021年   304篇
  2020年   342篇
  2019年   591篇
  2018年   98篇
  2017年   62篇
  2016年   56篇
  2015年   62篇
  2014年   194篇
  2013年   163篇
  2012年   73篇
  2011年   63篇
  2010年   46篇
  2009年   23篇
  2008年   12篇
  2007年   6篇
  2006年   1篇
  1985年   2篇
排序方式: 共有2292条查询结果,搜索用时 15 毫秒
91.
92.
Long noncoding RNAs (lncRNAs) display essential roles in cancer progression. FLVCR1-AS1 is a rarely investigated lncRNAs involved in various human cancers, such as hepatocellular carcinoma and lung cancer. However, its function in glioma has not been clarified. In our study, we found that FLVCR1-AS1 was highly expressed in glioma tissues and cell lines. And upregulation of FLVCR1-AS1 predicted poor prognosis in patients with glioma. Moreover, FLVCR1-AS1 knockdown inhibited proliferation, migration and invasion of glioma cells. Through bioinformatics analysis, we identified that FLVCR1-AS1 was a sponge for miR-4731-5p to upregulate E2F2 expression. Moreover, rescue assays indicated that FLVCR1-AS1 modulated E2F2 expression to participate in glioma progression. Altogether, our research demonstrates that the FLVCR1-AS1/miR-4731-5p/E2F2 axis is a novel signaling in glioma and may be a potential target for tumor therapy.  相似文献   
93.
94.
Transforming growth factor β (TGFβ) is a prominent cytokine that promotes tumor progression by activating epithelial-to-mesenchymal transition (EMT). This study indicated that TGFβ exerted metastasis by inducing zinc finger E-box binding homeobox 1 (ZEB1) and a long noncoding RNA, LINC00273, expressions in A549 cells. Knocking down LINC00273 diminished TGFβ induced ZEB1 expression as well as metastasis. Mechanistically, LINC00273 acted as a molecular sponge of microRNA (miR)-200a-3p which liberate ZEB1 to perform its prometastatic functions. LINC00273 knockdown and miR200a3p mimic transfection of A549 cells were used for validating the link between TGFβ and LINC00273 induced metastasis. RNA pulldown and luciferase assay were performed to establish mir200a-3p-LINC00273 interaction. High expressions of LINC00273, TGFβ, and ZEB1 with concurrent low miR200a-3p expression had been verified in vivo and in patient samples. Overall, LINC00273 promoted TGFβ-induced lung cancer EMT through miR-200a-3p/ZEB1 feedback loop and may serve as a potential target for therapeutic intervention in lung cancer metastasis.  相似文献   
95.
96.
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. As a platinum-based chemotherapeutic drug, cisplatin has been used for over 30 years in NSCLC treatment while its effects are diminished by drug resistance. Therefore, we aimed to study the potential role of UCA1 in the development of chemoresistance against cisplatin. Real-time polymerase chain reaction, western-blot analysis, and immunofluorescence were used to study the involvement of UCA1, miR-495, and NRF2 in chemoresistance against cisplatin. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to determine the effect of cisplatin on cell proliferation. Computational analysis and luciferase assay were carried out to explore the interaction among UCA1, miR-495, and NRF2. The cisplatin-R group exhibited lower levels of UCA1 and NRF2 expression but a higher level of miR-495 expression than the cisplatin-S group. The growth rate and half-maximal inhibitory concentration of cellular dipeptidyl peptidase (cisplatinum) of the cisplatin-R group were much higher than those in the cisplatin-S group. MiR-495 contained a complementary binding site of UCA1, and the luciferase activity of wild-type UCA1 was significantly reduced after the transfection of miR-495 mimics. MiR-495 directly targeted the 3′-untranslated region (3′-UTR) of NRF2, and the luciferase activity of wild-type NRF2 3′-UTR was evidently inhibited by miR-495 mimics. Finally, UCA1 and NRF2 expressions in the effective group were much lower than that in the ineffective group, along with a much higher level of miR-495 expression. We suggested for the first time that high expression of UCA1 contributed to the development of chemoresistance to cisplatin through the UCA1/miR-495/NRF2 signaling pathway.  相似文献   
97.
Growing reports indicate that long noncoding RNA (lncRNA) are involved in the regulation of various biological processes of cancer cells. LINC00319 is an ill investigated lncRNA and has been shown to regulate lung cancer, nasopharyngeal carcinoma and ovarian cancer. Nevertheless, its roles in bladder cancer (BCa) remain unclear. In our research, LINC00319 was shown to be an upregulated lncRNA in BCa tissues. LINC00319 expression is negatively correlated with the patient's prognosis. Silencing of LINC00319 suppressed BCa proliferation and invasiveness. In addition, the data indicated LINC00319 was a sponge for miR-4492 and miR-4492 suppressed ROMO1 expression in BCa. Furthermore, our results illustrated miR-4492/ROMO1 axis regulates proliferation, migration, and invasion and LINC00319 exerts oncogenic roles through modulating miR-4492/ROMO1 axis. In sum, this study suggested that LINC00319 acts as oncogenic roles in BCa progression.  相似文献   
98.
Triple-negative breast cancer (TNBC) is highly metastatic and frequently has a poor prognosis. The lack of comprehension of TNBC and gene therapy targets has led to limitedly effective treatment for TNBC. This study was conducted to better understand the molecular mechanism behind TNBC progression, and to find out promising gene therapy targets for TNBC. Herein the influence of miR-122-5p's binding charged multivesicular body protein 3 (CHMP3) 3′-untranslated region (3′-UTR) on in TNBC cells was investigated. in vitro experiments quantitative real-time polymerase chain reaction, immunoblot analysis, dual-luciferase reporter gene assay, cell counting assay, transwell invasion assay, and flow cytometry-determined cell apoptosis assay were employed. We also used TargetScan Human 7.2 database to find out the target relationship between miR-122-5p and CHMP3 3′-UTR. TImer algorithm was used to provide an overview of the expression of CHMP3 gene across human pan-cancer, to predict the survival outcome of breast cancer patients, and to predict the correlation between CHMP3 gene expression and epithelial-mesenchymal transition (EMT) and mitogen-activated protein kinase (MAPK)-related gene expression. CHMP3 gene was significantly downregulated across a wide range of human cancers including breast cancer (BRCA). A higher level of CHMP3 gene predicted a better 3- and 5-year survival outcome of patients with BRCA. In our experiments, miR-122-5p was significantly upregulated and CHMP3 gene was significantly downregulated in TNBC cells compared with normal cell line. miR-122-5p mimics enhanced TNBC cell viability, proliferation, and invasion whereas the upregulation of CHMP3 gene led to an opposite outcome. Forced expression of miR-122-5p suppressed cell apoptosis, compelled EMT and MAPK signaling whereas forced expression of CHMP3 did the opposite. We then conclude that miR-122-5p promotes aggression and EMT in TNBC by suppressing CHMP3 through MAPK signaling.  相似文献   
99.
Several studies have shown that low expression of epoxide hydrolase 1 (EPHX1) is closely associated with varying human cancers, including hepatocellular carcinoma (HCC). This study aims to explore the potential mechanism of EPHX1 silencing and revealed a novel regulatory pathway in the pathogenesis of HCC. In this study, micro ribonucleic acid (miR)-184 was predicted and validated to be a regulator of EPHX1 through experiments, and its expression was negatively correlated with the messenger RNA (mRNA) levels of EPHX1 in primary tumors. Elevation of EPHX1 suppressed cell proliferation and migration as well as cell cycle progression, and induced apoptosis, while downregulation of miR-184 exhibited the opposite effect on cellular processes. Moreover, LINC00205 interacted with miR-184 and was markedly downregulated in tumors. The effects of the miR-184 inhibitor on cell proliferation, apoptosis, and migration were reversed in part by the transfection with LINC00205 small interfering RNAs. In addition, LINC00205 acted as a molecular sponge to positively regulate the mRNA and protein levels of EPHX1 via regulating miR-184. The tumorigenicity of HCC cells was enhanced by LINC00205 shRNA but diminished by overexpression of EPHX1 in vivo. Clinically, the EPHX1 expression in patients with HCC was markedly downregulated. Taken together, the results of this study suggest that as a competing endogenous RNA, LINC00205 may regulate EPHX1 by inhibiting miR-184 in the progression of HCC and that targeting the LINC00205/miR-184/EPHX1 axis may provide a treatment protocol for patients.  相似文献   
100.
Myocardial infarction (MI) is known as a serious global problem, which has a high mortality rate and cause severe heart damage. Mounting evidence has suggested that exercise provides direct endogenous cardiac protection against various cardiovascular diseases including MI. However, the underlying mechanism of exercise’s cardioprotective effect against MI has not been fully understood. Here, we found that a 4-wk swim training exerted protective effects against MI in C57 mice, as evidenced by increased cardiac function and decreased cardiac apoptosis. A plasma miRNA profiling assay was then performed, and 10 differentially expressed miRNAs were detected. Among them, miR-1192 was increased after exercise, and it exerted significant protective effect against hypoxia in cultured neonatal cardiomyocytes. In addition, intramyocardially injection of agomiR-1192 exerted similar cardioprotective effect as exercise, and inhibition of miR-1192 using antgomiR-1192 abolished the cardioprotective effect of exercise in MI mice, suggesting that exercise exerted cardioprotection against MI through upregulation of miR-1192. Furthermore, we found that miR-1192 exerted cardioprotective effect via targeting caspase 3 in cardiomyocytes. These findings suggested that exercise protects the heart against MI through upregulation of miR-1192, and miR-1192 is a novel exerkine in exercise-induced cardioprotection against MI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号