首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2057篇
  免费   158篇
  国内免费   107篇
  2322篇
  2024年   23篇
  2023年   72篇
  2022年   122篇
  2021年   304篇
  2020年   343篇
  2019年   592篇
  2018年   98篇
  2017年   62篇
  2016年   56篇
  2015年   62篇
  2014年   194篇
  2013年   163篇
  2012年   73篇
  2011年   63篇
  2010年   46篇
  2009年   23篇
  2008年   12篇
  2007年   6篇
  2006年   1篇
  2000年   1篇
  1985年   2篇
  1983年   1篇
  1980年   1篇
  1977年   2篇
排序方式: 共有2322条查询结果,搜索用时 0 毫秒
71.
Accumulating studies have implicated that microRNAs (miRNAs) are involved in the pathogenesis of colorectal cancer (CRC). However, the role of miR-548c-5p, a novel identified miRNA in malignancies, in colorectal carcinogenesis remains largely unknown. The present study is aimed to investigate the effect and molecular mechanism of miR-548c-5p in CRC by a sequence of cellular experiments. miR-548c-5p was significantly downregulated, whereas phosphoglycerate kinase 1 (PGK1), a key enzyme for glycolysis, was obviously upregulated in peripheral blood mononuclear cells and cancer tissues from patients with CRC. Besides, miR-548c-5p and PGK1 were negatively associated with each other. The luciferase reporter assay revealed that PGK1 was a targeted gene of miR-548c-5p. Moreover, the proliferation and generation of inflammatory cytokines (TNF-α and IL-6) were significantly inhibited in miR-548c-5p-overexpressed SW480 CRC cells stimulated by lipopolysaccharide (LPS). Accordingly, miR-548c-5p may serve as a cancer suppressor in CRC by targeting PGK1.  相似文献   
72.
73.
74.
Glioblastoma (GBM), a malignant and lethal tumor, remains a big threat to human health and life. Increasing explorations have confirmed that long noncoding RNAs are involved in the tumorigenesis and development of multiple cancers. Nevertheless, the regulatory mechanism of (long intergenic nonprotein coding RNA 1579 LINC01579) in GBM remains to be investigated. In this study, the expression of LINC01579 was upregulated in GBM cells and LINC01579 knockdown inhibited cell proliferation as well as promoted cell apoptosis. Additionally, LINC01579 acted as a sponge for miR-139-5p in GBM and eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) was found to be a downstream target of miR-139-5p. Furthermore, the positive correlation of LINC01579 and EIF4G2 as well as the converse correlation between miR-139-5p and LINC01579 (or EIF4G2) were revealed by the experiments. Based on rescue assays, EIF4G2 overexpression or miR-139-5p inhibitor partially recovered the function of LINC01579 knockdown on cell proliferation and apoptosis. In summary, the results of this study verified that LINC01579 modulated cell proliferation and cell apoptosis in GBM by competitively binding with miR-139-5p to regulate EIF4G2, which provided a new clue to figure out potential therapy for patients suffered from GBM.  相似文献   
75.
Chronic hypoxic heart disease (CHD) is a common clinical type of congenital heart disease. Long noncoding RNA regulator of reprogramming (lncRNA-ROR) exerts an important regulating effect in cardiovascular diseases. In our study, we explored the effect of lncRNA-ROR and the possible mechanisms against hypoxia-caused apoptosis in H9c2 cells. H9c2 cells were exposed to hypoxia (1% O2) to construct the in vitro model of CHD. The level of lncRNA-ROR and microRNA (miRNA/miR)-145 was detected. To upregulate the level of lncRNA-ROR and miR-145, transfection was carried out. Western blot assay was performed to quantified protein expression. The interaction of lncRNA-ROR with miR-145 was verified by RIP and Dual-luciferase reporter assays. The expression of p53 and Bax was largely elevated and Bcl-2 was suppressed by hypoxia induction. We found that lncRNA-ROR was elevated by hypoxia. LncRNA-ROR overexpression was able to relieve the damages of H9c2 cells induced by hypoxia through rescuing viability, suppressing apoptosis, and blocking Cytochrome c release. miR-145 was suppressed by overexpressed lncRNA-ROR and the combination of miR-145 mimic was able to abolish the protective effect of lncRNA-ROR. Moreover, we found that lncRNA-ROR activated Ras/Raf/MEK/ERK and PI3K/AKT transduction cascades by suppressing miR-145. Besides, lncRNA-ROR directly targeted miR-145 and negatively modulated the level of miR-145. Our present study revealed that lncRNA-ROR protected H9c2 cells against hypoxia-caused damages by regulation of miR-145 through activating Ras/Raf/MEK/ERK and PI3K/AKT.  相似文献   
76.
77.
78.
79.
80.
Inhibition of osteoclasts formation and bone resorption by estrogen is very important in the etiology of postmenopausal osteoporosis. The mechanisms of this process are still not fully understood. Recent studies implicated an important role of microRNAs in estrogen-mediated responses in various cellular processes, including cell differentiation and proliferation. Thus, we hypothesized that these regulatory molecules might be implicated in the process of estrogen-decreased osteoclasts formation and bone resorption. Western blot, quantitative real-time polymerase chain reaction, tartrate-resistant acid phosphatase staining, pit formation assay and luciferase assay were used to investigate the role of microRNAs in estrogen-inhibited osteoclast differentiation and bone resorption. We found that estrogen could directly suppress receptor activator of nuclear factor B ligand/macrophage colony-stimulating factor-induced differentiation of bone marrow-derived macrophages into osteoclasts in the absence of stromal cell. MicroRNA-27a was significantly increased during the process of estrogen-decreased osteoclast differentiation. Overexpressing of microRNA-27a remarkably enhanced the inhibitory effect of estrogen on osteoclast differentiation and bone resorption, whereas which were alleviated by microRNA-27a depletion. Mechanistic studies showed that microRNA-27a inhibited peroxisome proliferator-activated receptor gamma (PPARγ) and adenomatous polyposis coli (APC) expression in osteoclasts through a microRNA-27a binding site within the 3′-untranslational region of PPARγ and APC. PPARγ and APC respectively contributed to microRNA-27a-decreased osteoclast differentiation and bone resorption. Taken together, these results showed that microRNA-27a may play a significant role in the process of estrogen-inhibited osteoclast differentiation and function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号