首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3085篇
  免费   127篇
  国内免费   91篇
  3303篇
  2023年   35篇
  2022年   39篇
  2021年   32篇
  2020年   47篇
  2019年   73篇
  2018年   100篇
  2017年   58篇
  2016年   48篇
  2015年   54篇
  2014年   141篇
  2013年   216篇
  2012年   130篇
  2011年   174篇
  2010年   128篇
  2009年   132篇
  2008年   142篇
  2007年   145篇
  2006年   131篇
  2005年   108篇
  2004年   79篇
  2003年   88篇
  2002年   68篇
  2001年   42篇
  2000年   47篇
  1999年   46篇
  1998年   42篇
  1997年   33篇
  1996年   31篇
  1995年   30篇
  1994年   37篇
  1993年   26篇
  1992年   23篇
  1991年   23篇
  1990年   20篇
  1988年   26篇
  1987年   18篇
  1986年   12篇
  1985年   65篇
  1984年   68篇
  1983年   41篇
  1982年   52篇
  1981年   68篇
  1980年   49篇
  1979年   51篇
  1978年   55篇
  1977年   43篇
  1976年   39篇
  1975年   42篇
  1974年   44篇
  1973年   37篇
排序方式: 共有3303条查询结果,搜索用时 0 毫秒
31.
The behavior of insects and their perception of their surroundings are driven, in a large part, by odorants and pheromones. This is especially true for social insects, such as the honey bee, where the queen controls the development and the caste status of the other individuals. Pheromone perception is a complex phenomenon relying on a cascade of recognition events, initiated in antennae by pheromone recognition by a pheromone-binding protein and finishing with signal transduction at the axon membrane level. With to the objective of deciphering this initial step, we have determined the structures of the bee antennal pheromone-binding protein (ASP1) in the apo form and in complex with the main component of the queen mandibular pheromonal mixture, 9-keto-2(E)-decenoic acid (9-ODA) and with nonpheromonal components. In the apo protein, the C terminus obstructs the binding site. In contrast, ASP1 complexes have different open conformations, depending on the ligand shape, leading to different volumes of the binding cavity. The binding site integrity depends on the C terminus (111-119) conformation, which involves the interplay of two factors; i.e. the presence of a ligand and a low pH. Ligand binding to ASP1 is favored by low pH, opposite to what is observed with other pheromone-binding proteins, such as those of Bombyx mori and Anopheles gambiae.  相似文献   
32.
Human alpha or beta interferons inhibit the proliferation of Daudi Burkitt lymphoma cells and induce the differentiation of these cells towards a mature plasma cell phenotype. Similar responses are seen when Daudi cells are treated with the phorbol ester, TPA. Both interferons and TPA down-regulate expression of the c-myc oncogene in these cells. Although TPA can mimic the effect of interferon on cell differentiation, it does not induce 2'5' oligoadenylate synthetase or the interferon-sensitive mRNAs, 6-16 or 9-27. Thus chronic stimulation of protein kinase C by TPA cannot mimic all of the effects of interferon treatment on gene expression. Inhibition of ADP-ribosyl transferase activity by 3-methoxybenzamide impairs interferon- or TPA-induced differentiation of Daudi cells. This agent induces a higher level of c-myc mRNA in the cells and stimulates the incorporation of [3H]thymidine into DNA; although these effects are partially counteracted by interferon or TPA treatment, the elevated expression of the c-myc gene may be sufficient to prevent terminal differentiation and allow cell proliferation to continue.  相似文献   
33.
Bacteria associated with arbuscular mycorrhizal (AM) fungal spores may play functional roles in interactions between AM fungi, plant hosts and defence against plant pathogens. To study AM fungal spore-associated bacteria (AMB) with regard to diversity, source effects (AM fungal species, plant host) and antagonistic properties, we isolated AMB from surface-decontaminated spores of Glomus intraradices and Glomus mosseae extracted from field rhizospheres of Festuca ovina and Leucanthemum vulgare. Analysis of 385 AMB was carried out by fatty acid methyl ester (FAME) profile analysis, and some also identified using 16S rRNA gene sequence analysis. The AMB were tested for capacity to inhibit growth in vitro of Rhizoctonia solani and production of fluorescent siderophores. Half of the AMB isolates could be identified to species (similarity index 0.6) within 16 genera and 36 species. AMB were most abundant in the genera Arthrobacter and Pseudomonas and in a cluster of unidentified isolates related to Stenotrophomonas. The AMB composition was affected by AM fungal species and to some extent by plant species. The occurrence of antagonistic isolates depended on AM fungal species, but not plant host, and originated from G. intraradices spores. AM fungal spores appear to host certain sets of AMB, of which some can contribute to resistance by AM fungi against plant pathogens.  相似文献   
34.
35.
ADP-ribosylation reaction, that is the transfer of the ADP-ribose moiety of NAD+ to acceptor protein, is catalyzed by two classes of ADP-ribosyltransferases,i.e., poly(ADP-ribose) synthetase and mono (ADP-ribosyl)transferases. These two types differ not only in the number of transferring ADP-ribose units but also in the acceptor amino acid(s) and protein. Their in hibitors, particularly those of poly(ADP-ribose) synthetase, have been successfully employed in studies on biological functions of the enzymes and other related fields of research. Recently, we found many potent and specific inhibitors of poly-(ADP-ribose) synthetase, and broadened their chemical as well as biochemical variety. More recently, we found several potent inhibitors of arginine-specific mono(ADP-ribosyl)transferases and activators of poly(ADP-ribose) synthetase.  相似文献   
36.
37.
Samuel G  Reeves P 《Carbohydrate research》2003,338(23):2503-2519
The O-antigen is an important component of the outer membrane of Gram-negative bacteria. It is a repeat unit polysaccharide and consists of a number of repeats of an oligosaccharide, the O-unit, which generally has between two and six sugar residues. O-Antigens are extremely variable, the variation lying in the nature, order and linkage of the different sugars within the polysaccharide. The genes involved in O-antigen biosynthesis are generally found on the chromosome as an O-antigen gene cluster, and the structural variation of O-antigens is mirrored by genetic variation seen in these clusters. The genes within the cluster fall into three major groups. The first group is involved in nucleotide sugar biosynthesis. These genes are often found together in the cluster and have a high level of identity. The genes coding for a significant number of nucleotide sugar biosynthesis pathways have been identified and these pathways seem to be conserved in different O-antigen clusters and across a wide range of species. The second group, the glycosyl transferases, is involved in sugar transfer. They are often dispersed throughout the cluster and have low levels of similarity. The third group is the O-antigen processing genes. This review is a summary of the current knowledge on these three groups of genes that comprise the O-antigen gene clusters, focusing on the most extensively studied E. coli and S. enterica gene clusters.  相似文献   
38.
To date, investigations of the hydrophobic substrate site of the insect Delta class glutathione transferase are limited in number. In the present study, putative hydrophobic site residues of AdGSTD4-4 have been proposed and characterized. These residues are Gln-112, Thr-174, Phe-212, Arg-214, Tyr-215 and Phe-216. It was found that Gln-112 does not contribute significantly to the catalytic properties of AdGSTD4-4. Arg-214, Tyr-215 and Phe-216 made contributions to catalytic properties and the rate-limiting step. Thr-174 and Phe-212 appeared to be important in enzymatic catalysis by stabilizing the active site β1-α1 loop on which the critical catalytic residue Ser-9 is located. The aromatic Phe-212 pi cloud appears to be important for interactions with its hydrophobic size representing an almost equally important factor. The data suggests that these residues are not directly involved in catalysis but exert their influence through secondary interactions. In addition, active site rearrangements occur to bring different residues into play even for conjugation through the same mechanisms. Therefore, due to the conformational rearrangements topologically equivalent residues observed in crystal structures may not perform equivalent roles in catalysis in different GST classes.  相似文献   
39.
40.
The structure determination of yeast hexokinase has been extended to 3.5 Å resolution for the dimer and to 2.7 Å resolution for the monomer using multiple isomorphous replacement. The electron density maps of both the monomer and dimer crystal forms have been substantially improved by an averaging procedure. From these maps the course of the polypeptide backbone and some aspects of the dimer interaction have been established.The hexokinase subunit arrangement is contrary to a major tenet of the Monod et al. (1965) theory of allosteric proteins which postulated that only symmetric or isologous interactions of subunits would occur in oligomeric proteins. One subunit of the dimer is related to the other by a 156 ° rotation about and a 13.8 Å translation along a molecular screw axis. In the hexokinase dimer the set of residues in one subunit that is interacting with the other subunit is different from the set of residues in the second subunit that is interacting with the first subunit. This heterologous or non-symmetric interaction of subunits is associated with some small differences in the structure of the two subunits, particularly at the subunit interface, and accounts for some of this enzyme's non-symmetric interactions with substrates and activators. Indeed, the non-symmetric subunit association may play an important role in the control of this enzyme's activity.The overall structure of hexokinase is considerably different than the known structures of the other enzymes in the glycolytic pathway. Although there is a striking similarity between the domain of hexokinase that binds AMP and the domain of lactate dehydrogenase that binds NAD, the former structure contains both antiparallel and parallel β-pleated strands, while the latter contains only parallel β-structure. In an attempt to assess the significance of this structural similarity, the structure of the nucleotide binding domains of hexokinase and lactate dehydrogenase are compared to a portion of carboxypeptidase A. The observed similarities among these structures suggests that a central β-pleated sheet flanked by α-helices is a common supersecondary structure that probably arose by convergent as well as divergent evolution. Thus, there appears to be no compelling evidence at this time to support the hypothesis that a part of hexokinase has evolved from the same gene as the dinucleotide binding domain of lactate dehydrogenase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号