首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5113篇
  免费   90篇
  国内免费   85篇
  5288篇
  2023年   43篇
  2022年   44篇
  2021年   51篇
  2020年   70篇
  2019年   100篇
  2018年   110篇
  2017年   54篇
  2016年   53篇
  2015年   57篇
  2014年   330篇
  2013年   411篇
  2012年   230篇
  2011年   418篇
  2010年   330篇
  2009年   293篇
  2008年   294篇
  2007年   326篇
  2006年   295篇
  2005年   266篇
  2004年   183篇
  2003年   169篇
  2002年   178篇
  2001年   39篇
  2000年   31篇
  1999年   33篇
  1998年   35篇
  1997年   24篇
  1996年   27篇
  1995年   19篇
  1994年   19篇
  1993年   13篇
  1992年   15篇
  1991年   18篇
  1990年   12篇
  1988年   10篇
  1985年   49篇
  1984年   72篇
  1983年   43篇
  1982年   47篇
  1981年   73篇
  1980年   53篇
  1979年   48篇
  1978年   50篇
  1977年   46篇
  1976年   39篇
  1975年   49篇
  1974年   43篇
  1973年   41篇
  1972年   10篇
  1971年   6篇
排序方式: 共有5288条查询结果,搜索用时 15 毫秒
991.
A lignin model compound, named in short guaiagylglycerol beta-guaiacyl ether (GGE), contains the beta-0-4 ether linkage that is common in the chemical structure of lignin. A Pseudomonas sp. (GU5) had been isolated as an organism able to grow with GGE as the sole source of carbon and energy. When grown on vanillate, the bacteria contained a NAD+ -dependent dehydrogenase converting GGE to a 355 nm absorbing product. The enzyme, named GGE-dehydrogenase, was purified about 160-fold using gel permeation, ion exchange on DEAE-Sephadex, and dye-ligand affinity chromatography. The new protein was about 52 kDa in apparent size with but one polypeptide chain after denaturation and reduction. According to several criteria, the product of GGE oxidation (Km = 12 microM) was identified as the corresponding conjugated ketone at the alpha-carbon of the C3 side-chain. The secondary alcohol function in GGE was apparently the sole target of the enzyme action. However the conversion of GGE into ketone catalyzed by the enzyme was only partial, and did not exceed 50%, probably because only one of the alpha-enantiomers was susceptible to enzyme attack. In contrast the ketone, either made by organic synthesis or by enzymic oxidation of GGE, could be totally reduced back to GGE (Km = 13 microM at pH 8.4, 8 microM at neutral pH), with NADH as the reductant, as confirmed by UV absorption and NMR spectra. Other model compounds with no primary alcoholic function, ether linkage or phenolic group were also substrates for the enzyme, confirming the specificity of GGE-dehydrogenase for the alpha-carbon position. Conjugation of the alpha-ketone with an adjacent phenolic nucleus interfered strongly with equilibrium constants and redox potentials of the system according to pH, and the enzyme displayed widely different optima with pH over 9 when oxidizing GGE, below 7 when reducing the ketone. Equilibrium studies showed that the ketone/GGE potential was -0.37 volt at pH 8.7, -0.23 volt at pH 7 (30 degrees C). The significance of this new dehydrogenase and its properties are discussed, especially in the general concern of lignin biodegradation.  相似文献   
992.
By using a laccase-secretion indicator for screening laccase-producing microorganisms, a novel laccase-producing strain was isolated and identified as Paraphoma sp. strain GZS18, it produced increased laccase and mycelia at 34?°C. Further investigations showed that the production of laccase by Paraphoma sp. GZS18 was greatly enhanced by less toxic inducers copper sulphate and methyl orange. Copper sulphate and methyl orange were added into the cultivation medium at 12 and 60?h, respectively, and the maximum laccase production was obtained. Through Plackett–Burman design and response surface methodology, we obtained the optimum production conditions as follows: methyl orange, 39.90?μM; addition time of copper sulphate, 11.95?h; addition time of methyl orange, 51.40?h. Under the above conditions, the experimental value of laccase production was 12,250.76?U/L. The extracellular laccase from Paraphoma sp. GZS18 was purified to homogeneity, which showed a molecular mass of 75?kDa. N-terminal amino acid sequences was AXaVSVASREMT.  相似文献   
993.
Water-soluble β-1,3-glucan (w-glucan) prepared from curdlan is reported to possess various bioactive and medicinal properties. To develop an efficient and cost-effective microbial fermentation method for the direct production of w-glucan, a coupled fermentation system of Agrobacterium sp. and Trichoderma harzianum (CFS-AT) was established. The effects of Tween-80, glucose flow rate, and the use of a dissolved oxygen (DO) control strategy on w-glucan production were assessed. The addition of 10?g?L?1 Tween-80 to the CFS-AT enhanced w-glucan production, presumably by loosening the curdlan ultrastructure and increasing the efficiency of curdlan hydrolysis. A two-stage glucose and DO control strategy was optimal for w-glucan production. At the T. harzianum cell growth stage, the optimal glucose flow rate and agitation speed were 2.0?g?L?1 hr?1 and 600?rpm, respectively, and at the w-glucan production stage, they were 0.5?g?L?1 hr?1 and 400?rpm, respectively. W-glucan production reached 17.31?g?L?1, with a degree of polymerization of 19–25. Furthermore, w-glucan at high concentrations exhibited anti-tumor activity against MCF-7, HepG2, and Hela cancer cells in vitro. This study provides a novel, cost-effective, eco-friendly, and efficient microbial fermentation method for the direct production of biologically active w-glucan.  相似文献   
994.
995.
Although many naturally occurring proteins consist of multiple domains, most studies on protein folding to date deal with single-domain proteins or isolated domains of multi-domain proteins. Studies of multi-domain protein folding are required for further advancing our understanding of protein folding mechanisms. Borrelia outer surface protein A (OspA) is a β-rich two-domain protein, in which two globular domains are connected by a rigid and stable single-layer β-sheet. Thus, OspA is particularly suited as a model system for studying the interplays of domains in protein folding. Here, we studied the equilibria and kinetics of the urea-induced folding–unfolding reactions of OspA probed with tryptophan fluorescence and ultraviolet circular dichroism. Global analysis of the experimental data revealed compelling lines of evidence for accumulation of an on-pathway intermediate during kinetic refolding and for the identity between the kinetic intermediate and a previously described equilibrium unfolding intermediate. The results suggest that the intermediate has the fully native structure in the N-terminal domain and the single layer β-sheet, with the C-terminal domain still unfolded. The observation of the productive on-pathway folding intermediate clearly indicates substantial interactions between the two domains mediated by the single-layer β-sheet. We propose that a rigid and stable intervening region between two domains creates an overlap between two folding units and can energetically couple their folding reactions.  相似文献   
996.
997.
The 3D structures of α-crystallin, a major eye lens protein, and related small heat shock proteins are unresolved. It has been assumed that α-crystallin is primarily a β-sheet globular protein similar to γ-crystallin (Siezen and Argos, Biochim. Biophys. Acta, 1983, 748, 56–67) containing sequence repeats in its two domains (Wistow, FEBS Lett. 1985, 181, 1–6). Positional flexibility of amino acid residues and far UV-circular dichroism spectroscopy were used to investigate structural relationships among these proteins. The utility of flexibility plots for predicting protein structure is demonstrated by the excellent correlation of these plots with the known 3D X-ray structures of β/γ-crystallins. Similar analyses of α-crystallin subunits, αA and αB, and human heat shock protein 27 show that the C-terminal domains and connecting segments of these proteins are very similar while the N-terminal domains have significant structural differences. Unlike β/γ-crystallins, both Hsp27 and α-crystallin subunits are asymmetrical with highly flexible C-terminal domains. Flexibility is considered essential for protein functional activity. Therefore, the C-terminal region may play an active role in α-crystallin and small heat shock protein function. Differences in flexibility profiles and estimated secondary structure distribution in α-crystallin by three recent/updated algorithms from far UV-CD spectra support our predicted 3D structure and the concept that α-crystallin and members of β/γ-superfamily are structurally dissimilar.  相似文献   
998.
Tobacco genes that are induced in response to salicylic acid (SA) treatment with immediate-early kinetics were identified by differential mRNA display. Detailed analysis of IS10a, one cDNA clone identified by this method, revealed induction within 30 min of treatment, with a peak of expression at 3 h, that decayed rapidly thereafter. Treatment with the protein synthesis inhibitor, cycloheximide (CHX), also caused induction of IS10a mRNA to comparable levels, but the IS10a mRNA continued to accumulate after 3 h of induction. In combination, CHX and SA led to a superinduction of IS10a mRNA levels that was also sustained. Half-maximal induction was evident at ca. 100–150 M SA. In addition to SA, induction of IS10a occurred to varying degrees upon treatment with acetylsalicylic acid, benzoic acid, 2,4-dichlorophenoxyacetic acid, methyl jasmonate, and hydrogen peroxide, whereas treatment with other compounds had no effect. The proteins encoded by IS10a and a second highly homologous cDNA show sequence similarity to UDP-glucose: flavonoid glucosyltransferases.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 4HBA 4-hydroxybenzoic acid - aa amino acid - bp base pair - nt nucleotide - ASA acetyl salicylic acid - BA benzoic acid - CHX Cycloheximide - MJ methyl jasmonate - PCR polymerase chain reaction - SA salicylic acid - TMV tobacco mosaic virus  相似文献   
999.
Balansia epichloë, a systemic plant pathogen isolated from Sporobolus poiretii, was shown to produce the plant growth regulators 3-indole acetic acid, 3-indole ethanol, 3-indole acetamide and methyl-3-indole carboxylate when grown on a medium containing tryptophan. When grown on a tryptophan deficient medium 3-substituted indole derivatives were not detected. However, extracts of the medium in lower doses increased and in higher doses inhibited the growth of wheat coleoptiles.  相似文献   
1000.
The conformational and binding properties towards Cu(II) and Ni(II) ions of Gly-Gly-His derivatives of poly(l-lysine) have been investigated mainly using circular dichroism (c.d.) spectroscopy. These derivatized polymers can be considered macromolecular analogues of the Cu(II) and Ni(II) binding site of human serum albumin. It has been shown that modification up to 53% of the ε-amino groups of lysine side chains by covalent binding of the tripeptide unit Gly-Gly-His does not induce appreciable alteration of the α-helix forming tendency of the polylysine backbone. The derivatized polymers exhibit strong affinity towards Cu(II) and Ni(II) ions. At neutral pH, complexes are formed in which each tripeptide chelating unit is linked to one metal ion. The spectral characteristics in the visible absorption region are consistent with a square planar geometry of the complexes, with deprotonated peptide groups and one imidazole nitrogen in the coordination sphere of the ion. C.d. measurements in the far u.v. indicate that complex formation in the side chains causes an increase of ordered structure of the peptide backbone at neutral pH. This fact is interpreted in terms of a reduced electrostatic repulsion among side chains due to charge neutralization in the tripeptide units linked to metal ions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号