首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1493篇
  免费   47篇
  国内免费   23篇
  1563篇
  2023年   10篇
  2022年   7篇
  2021年   16篇
  2020年   16篇
  2019年   25篇
  2018年   29篇
  2017年   22篇
  2016年   20篇
  2015年   14篇
  2014年   85篇
  2013年   132篇
  2012年   41篇
  2011年   94篇
  2010年   99篇
  2009年   114篇
  2008年   107篇
  2007年   76篇
  2006年   59篇
  2005年   48篇
  2004年   42篇
  2003年   21篇
  2002年   31篇
  2001年   24篇
  2000年   11篇
  1999年   9篇
  1998年   18篇
  1997年   12篇
  1996年   25篇
  1995年   15篇
  1994年   15篇
  1993年   20篇
  1992年   18篇
  1991年   15篇
  1990年   9篇
  1989年   12篇
  1988年   8篇
  1987年   8篇
  1986年   5篇
  1985年   31篇
  1984年   48篇
  1983年   23篇
  1982年   32篇
  1981年   24篇
  1980年   25篇
  1979年   14篇
  1978年   6篇
  1977年   9篇
  1976年   7篇
  1975年   4篇
  1974年   4篇
排序方式: 共有1563条查询结果,搜索用时 0 毫秒
111.
Two bacterial consortia growing on a random copolymer of ethylene glycol and propylene glycol units were obtained by enrichment cultures from various microbial samples. Six major strains included in both consortia were purified and identified as Sphingomonads, Pseudomonas sp. and Stenotrophomonas maltophilia. Three of them (Sphingobium sp. strain EK-1, Sphingopyxis macrogoltabida strain EY-1, and Pseudomonas sp. strain PE-2) utilized both PEG and polypropylene glycol (PPG) as a sole carbon source. Four PEG-utilizing bacteria had PEG dehydrogenase (PEG-DH) activity, which was induced by PEG. PCR products from DNA of these bacteria generated with primers designed from a PEG-DH gene (AB196775 for S. macrogoltabida strain 103) indicated the presence of a sequence that is the homologous to the PEG-DH gene (99% identity). On the other hand, five PPG-utilizing bacteria had PPG dehydrogenase (PPG-DH) activity, but the activity was constitutive. PCR of a PPG-DH gene was performed using primers designed from a polyvinyl alcohol dehydrogenase (PVA-DH) gene (AB190288 for Sphingomonas sp. strain 113P3) because a PPG-DH gene has not been cloned yet, but both PPG-DH and PVA-DH were active toward PPG and PVA (Mamoto et al. 2006). PCR products of the five strains did not have similarity to each other or to oxidoreductases including PVA-DH. The paper was edited by a native speaker through American Journal Experts (http://www.journalexperts.com).  相似文献   
112.
The X-ray structure of the group 2 major allergen from Dermatophagoides farinae (Der f 2) was determined to 1.83 A resolution. The overall Der f 2 structure comprises a single domain of immunoglobulin fold with two anti-parallel beta-sheets. A large hydrophobic cavity is formed in the interior of Der f 2. Structural comparisons to distantly related proteins suggest a role in lipid binding. Immunoglobulin E (IgE) cross-reactivity between group 2 house dust mite major allergens can be explained by conserved surface areas representing IgE binding epitopes.  相似文献   
113.
The protein-resistant polycationic graft polymer, poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG), was uniformly adsorbed onto a homogenous titanium surface and subsequently subjected to a direct current (dc) voltage. Under the influence of an ascending cathodic and anodic potential, there was a steady and gradual loss of PLL-g-PEG from the conductive titanium surface while no desorption was observed on the insulating silicon oxide substrates. We have implemented this difference in the electrochemical response of PLL-g-PEG on conductive titanium and insulating silicon oxide regions as a biosensing platform for the controlled surface functionalization of the titanium areas while maintaining a protein-resistant background on the silicon oxide regions. A silicon-based substrate was micropatterned into alternating stripes of conductive titanium and insulating silicon oxide with subsequent PLL-g-PEG adsorption onto its surfaces. The surface modified substrate was then subjected to +1800 mV (referenced to the silver electrode). It was observed that the potentiostatic action removed the PLL-g-PEG from the titanium stripes without inducing any polyelectrolyte loss from the silicon oxide regions. Time-of-flight secondary ions mass spectroscopy and fluorescence microscopy qualitatively confirmed the PLL-g-PEG retention on the silicon oxide stripes and its absence on the titanium region. This method, known as "Locally Addressable Electrochemical Patterning Technique" (LAEPT), offers great prospects for biomedical and biosensing applications. In an attempt to elucidate the desorption mechanism of PLL-g-PEG in the presence of an electric field on titanium surface, we have conducted electrochemical impedance spectroscopy experiments on bare titanium substrates. The results showed that electrochemical transformations occurred within the titanium oxide layer; its impedance and polarization resistance were found to decrease steadily upon both cathodic and anodic polarization resulting in the polyelectrolyte desorption from the titanium surface.  相似文献   
114.
115.
Summary Membrane-impermeant and -permeant maleimides were applied to characterize the location and function of the sulfhydryl (SH) groups essential for the facilitated diffusion mediated by the human erythrocyte glucose transport protein. Three such classes have been identified. Type I SH is accessible to membrane-impermeant reagents at the outer (exofacial) surface of the intact erythrocyte. Alkylation of this class inhibits glucose transport; D-glucose and cytochalasin B protect against the alkylation. Type II SH is located at the inner (endofacial) surface of the membrane and is accessible to the membrane-impermeant reagent glutathione maleimide only after lysis of the erythrocyte. D-glucose enhances, while cytochalasin B reduces, the alkylation of Type II SH by maleimides. Reaction of Types I and II SH with an impermeant maleimide increases the half-saturation concentration for binding of D-glucose to erythrocyte membranes. By contrast, inactivation of Type III SH markedly decreases the half-saturation concentration for the binding of D-glucose and other transported sugars. Type III SH is inactivated by the relatively lipid-soluble reagents N-ethylmaleimide (NEM) and dipyridyl disulfide, but not by the impermeant glutathione maleimide. Type III SH is thus located in a hydrophobic membrane domain. A kinetic model constructed to explain these observations indicates that Type III SH is required for the translocation event in a hydrophobic membrane domain which leads to the dissociation of glucose bound to transport sites at the membrane surfaces.  相似文献   
116.
Cancer is one of the major causes of death globally. The current treatment options are insufficient, leading to unmet medical needs in cancer treatment. Off-target side effects, multidrug resistance, selective distribution to cancerous tissues, and cell membrane permeation of anti-cancer agents are critical problems to overcome. There is a method to solve these problems by using receptor-mediated endocytosis (RME). It is well known that proteins such as integrin, HER2, EGFR, or other cancer biomarkers are specifically overexpressed on the surface of target cancer cells. By taking advantage of such specific receptors, payloads can be transported into cells through endocytosis using a conjugate composed of the corresponding ligands connected to the payloads by an appropriate linker. After RME, the payloads released by endosomal escape into the cytoplasm can exhibit the cytotoxic activity against cancer cells. Cell-penetrating peptides (CPPs), tumor-homing peptides (THPs), and monoclonal antibodies (mAbs) are utilized as ligands in this system. Antibody drug conjugates (ADCs) based on RME have already been used to cure cancer. In addition to the canonical conjugate method, nanocarriers for spontaneous accumulation in cancer tissue due to enhanced permeability and retention (EPR) effect are extensively used. In this review, I introduce the possibilities and advantages of drug design and development based on RME for the treatment of cancer.  相似文献   
117.
118.
NADPH dependent activation of microsomal glutathione transferase 1   总被引:1,自引:0,他引:1  
Microsomal glutathione transferase 1 (MGST1) can become activated up to 30-fold by several mechanisms in vitro (e.g. covalent modification by reactive electrophiles such as N-ethylmaleimide (NEM)). Activation has also been observed in vivo during oxidative stress. It has been noted that an NADPH generating system (g.s.) can activate MGST1 (up to 2-fold) in microsomal incubations, but the mechanism was unclear. We show here that NADPH g.s treatment impaired N-ethylmaleimide activation, indicating a shared target (identified as cysteine-49 in the latter case). Furthermore, NADPH activation was prevented by sulfhydryl compounds (glutathione and dithiothreitol). A well established candidate for activation would be oxidative stress, however we could exclude that oxidation mediated by cytochrome P450 2E1 (or flavine monooxygenase) was responsible for activation under a defined set of experimental conditions since superoxide or hydrogen peroxide alone did not activate the enzyme (in microsomes prepared by our routine procedure). Actually, the ability of MGST1 to become activated by hydrogen peroxide is critically dependent on the microsome preparation method (which influences hydrogen peroxide decomposition rate as shown here), explaining variable results in the literature. NADPH g.s. dependent activation of MGST1 could instead be explained, at least partly, by a direct effect observed also with purified enzyme (up to 1.4-fold activation). This activation was inhibited by sulfhydryl compounds and thus displays the same characteristics as that of the microsomal system. Whereas NADPH, and also ATP, activated purified MGST1, several nucleotide analogues did not, demonstrating specificity. It is thus an intriguing possibility that MGST1 function could be modulated by ligands (as well as reactive oxygen species) during oxidative stress when sulfhydryls are depleted.  相似文献   
119.
Neuromedin U (NMU) mediates various physiological functions via NMUR1 and NMUR2 receptors. NMUR2 has been considered a promising treatment option for diabetes and obesity. Although NMU-8, a shorter peptide, has potent agonist activity for both receptors, it is metabolically unstable. Therefore, NMU-8 analogs modified with long-chain alkyl moieties via a linker were synthesized. An octadecanoyl analog (17) with amino acid substitutions [αMePhe19, Nle21, and Arg(Me)24] and a linker [Tra-γGlu-PEG(2)] dramatically increased NMUR2 selectivity, with retention of high agonist activity. Subcutaneous administration of 17 induced anorectic activity in C57BL/6J mice. Owing to its high metabolic stability, 17 would be useful in clarifying the physiological role and therapeutic application of NMU.  相似文献   
120.
The Rab family, the largest branch of Ras small GTPases, plays a crucial role in the vesicular transport in plants. The members of Rab family act as molecular switches that regulate the fusion of vesicles with target membranes through conformational changes. However, little is known about the Rab5 gene involved in fruit ripening and stress response. In this study, the MiRab5 gene was isolated from stress-induced Mangifera indica. The full-length cDNA sequence was 984 bp and contained an open reading frame of 600 bp, which encoded a 200 amino acid protein with a molecular weight of 21.83 kDa and a theoretical isoelectric point of 6.99. The deduced amino acid sequence exhibited high homology with tomato (91% similarity) and contains all five characteristic Rab motifs. Real-time quantitative RT-PCR analysis demonstrated that MiRab5 was ubiquitously expressed in various mango tree tissues at different levels. The expression of MiRab5 was up-regulated during later stages of fruit ripening. Moreover, MiRab5 was generally up-regulated in response to various abiotic stresses (cold, salinity, and PEG treatments). Recombinant MiRab5 protein was successfully expressed and purified. SDS-PAGE and western blot analysis indicated that the expressed protein was recognized by the anti-6-His antibody. These results provide insights into the role of the MiRab5 gene family in fruit ripening and stress responses in the mango plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号