首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5283篇
  免费   416篇
  国内免费   1018篇
  2024年   24篇
  2023年   97篇
  2022年   122篇
  2021年   157篇
  2020年   208篇
  2019年   194篇
  2018年   209篇
  2017年   193篇
  2016年   217篇
  2015年   216篇
  2014年   299篇
  2013年   481篇
  2012年   210篇
  2011年   273篇
  2010年   231篇
  2009年   304篇
  2008年   287篇
  2007年   296篇
  2006年   307篇
  2005年   234篇
  2004年   219篇
  2003年   220篇
  2002年   175篇
  2001年   167篇
  2000年   120篇
  1999年   121篇
  1998年   95篇
  1997年   79篇
  1996年   94篇
  1995年   84篇
  1994年   71篇
  1993年   85篇
  1992年   54篇
  1991年   90篇
  1990年   44篇
  1989年   45篇
  1988年   37篇
  1987年   36篇
  1986年   39篇
  1985年   34篇
  1984年   46篇
  1983年   34篇
  1982年   34篇
  1981年   28篇
  1980年   18篇
  1979年   18篇
  1978年   18篇
  1977年   13篇
  1976年   11篇
  1972年   6篇
排序方式: 共有6717条查询结果,搜索用时 531 毫秒
181.
Today the most popular approach for the prevention of the restenosis consists in the use of the drug eluting stents. The stent acts as a source of drug, from a coating or from a reservoir, which is transported into and through the artery wall. In this study, the behaviour of a model of a hydrophilic drug (heparin) released from a coronary stent into the arterial wall is investigated. The presence of the specific binding site action is modelled using a reversible chemical reaction that explains the prolonged presence of drug in the vascular tissue. An axi-symmetric model of a single stent strut is considered. First an advection–diffusion problem is solved using the finite element method. Then a simplified model with diffusion only in the arterial wall is compared with: (i) a model including the presence of reversible binding sites in the vascular wall and (ii) a model featuring a drug reservoir made of a degradable polymeric matrix. The results show that the inclusion of a reversible binding for the drug leads to delayed release curves and that the polymer erosion affects the drug release showing a quicker elution of the drug from the stent.  相似文献   
182.
Muscle force estimation (MFE) has become more and more important in exploring principles of pathological movement, studying functions of artificial muscles, making surgery plan for artificial joint replacement, improving the biomechanical effects of treatments and so on. At present, existing software are complex for professionals, so we have developed a new software named as concise MFE (CMFE). CMFE which provides us a platform to analyse muscle force in various actions includes two MFE methods (static optimisation method and electromyographic-based method). Common features between these two methods have been found and used to improve CMFE. A case studying the major muscles of lower limb of a healthy subject walking at normal speed has been presented. The results are well explained from the effect of the motion produced by muscles during movement. The development of this software can improve the accuracy of the motion simulations and can provide a more extensive and deeper insight in to muscle study.  相似文献   
183.
In this study, we present an adaptive anisotropic finite element method (FEM) and demonstrate how computational efficiency can be increased when applying the method to the simulation of blood flow in the cardiovascular system. We use the SUPG formulation for the transient 3D incompressible Navier–Stokes equations which are discretised by linear finite elements for both the pressure and the velocity field.

Given the pulsatile nature of the flow in blood vessels we have pursued adaptivity based on the average flow over a cardiac cycle. Error indicators are derived to define an anisotropic mesh metric field. Mesh modification algorithms are used to anisotropically adapt the mesh according to the desired size field. We demonstrate the efficiency of the method by first applying it to pulsatile flow in a straight cylindrical vessel and then to a porcine aorta with a stenosis bypassed by a graft. We demonstrate that the use of an anisotropic adaptive FEM can result in an order of magnitude reduction in computing time with no loss of accuracy compared to analyses obtained with uniform meshes.  相似文献   
184.
In this work we examined the determination of soft tissue parameters via tissue aspiration experiments and inverse finite element characterisation. An aspiration tube was put against the target tissue. The deformation of the tissue inside the tube caused by weak suction was tracked with a video based system. A strain energy function was employed to model the elastic behaviour of soft tissue and viscoelasticity was accounted for by means of a quasi-linear viscoelastic formulation. Friction between the aspiration tube and the aspirated tissue was included in the model. Based on the assumed material model, an optimal set of material parameters was found, in order to best fit the experimental data obtained from ex-vivo experiments on pig kidney cortex. The inverse method resulted in robust determination of the unknown material parameters.  相似文献   
185.
We are interested in studying the genesis of a very common pathology: the human inguinal hernia. How the human inguinal hernia appears is not definitively clear, but it is accepted that it is caused by a combination of mechanical and biochemical alterations, and that muscular simulation plays an important role in this. This study proposes a model to explain how some physical parameters affect the ability to simulate the region dynamically and how these parameters are involved in generating inguinal hernias. We are particularly interested in understanding the mechanical alterations in the inguinal region because little is known about them or how they behave dynamically. Our model corroborates the most important theories regarding the generation of inguinal hernias and is an initial approach to numerically evaluating this affection.  相似文献   
186.
Glaucoma drainage device (GDD) has the potential to eliminate hypotony but still suffers from poor flow control and fibrosis. The ideal shunt should change its hydraulic resistance to achieve the desired intraocular pressure (IOP). In this study, the characterisation of a preliminary design of a new GDD is presented. This is activated by means of a diaphragm, which is actuated by conducting polymers. The valve can be manufactured employing microelectromechanical system technology by soft lithography. The characterisation process is performed by numerical simulation using the finite element method, considering the coupling between the fluid and the structure (diaphragm) obtaining the hydraulic resistance for several positions of the diaphragm. To analyse the hydraulic system of the microvalve implanted in a human eye, an equivalent circuit model was used. The parameters of the equivalent circuit model were obtained from numerical simulation. The hydraulic resistance of the designed GDD varies in the range of 13.08–0.36 mmHg min/μl compared with 3.38–0.43 mmHg min/μl for the Ahmed valve. The maximum displacement of the diaphragm in the vertical direction is 18.9 μm, and the strain in the plane is 2%. The proposed preliminary design allows to control the IOP by varying the hydraulic resistance in a greater range than the existing passive valves, and the numerical simulation facilitates the characterisation and the improvement of the design before its construction, reducing time and costs.  相似文献   
187.
A model for the ergometer rowing exercise is presented in this paper. From the quantitative observations of a particular trajectory (motion), the model is used to determine the moment of the forces produced by the muscles about each joint. These forces are evaluated according to the continuous system of equations of motion. An inverse dynamics analysis is performed in order to predict the joint torques developed by the muscles during the execution of the task. An elementary multibody mechanical system is used as an example to discuss the assumptions and procedures adopted.  相似文献   
188.
Abstract

The paper aims to evaluate the effects caused by a Mandibular Advancement Device (MAD) for Obstructive Sleep Apnoea Syndrome (OSAS) treatment. This study is based on Finite Element Method (FEM) for evaluating the load distribution on temporomandibular joint, especially on the mandibular condyle and disc, and on periodontal ligaments. The stress values on condyle and periodontal ligaments lead authors to consider MAD a safe procedure even for a long period. The obtained results also show the relationship between MAD material and load distribution at the periodontal ligaments. The paper is a step toward future analyses for studying and comparing the effects of MAD features, such as material, shape and dimensions, in order to allow the clinician prescribing the most fitting device.  相似文献   
189.
A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When both external and internal bone remodelling were simulated simultaneously, the initial rectangular design domain with a regularly distributed mass reduced gradually to an optimal state with external shape and internal structure similar to those of the natural proximal femur.  相似文献   
190.
The Emerson–Trinder reaction has been optimized in this work using an initial rate spectrophotometric method and response surface methodology (RSM). In this investigation, the variation range of critical variables along with the fixed parameters were selected based on a preliminary ‘one at a time’ (OVAT) procedure for the subsequent RSM chemometric analysis as follows: pH (6–10), buffer concentration (50–250?mM), 4-aminoantipyrine (4-AAP) concentration (1–5?mM), temperature (25–45°C). The optimum values of fixed parameters were: 4-fluorophenol (4-FP, 30?mM), horseradish peroxidase (HRP) enzyme activity (0.12?U?mL?1), and the fixed concentration of the H2O2 in the chemometric experiments was 11.4 µM. The non-linear nature of the experimental response of the reaction system was explained by a second-order polynomial equation, which revealed the impact of the experimental factors, their interactions and also their optimum values. The results of the reported RSM analysis proved to be quite appropriate for the design and optimization of this reaction, as illustrated by the relatively high value of the determination coefficient (R2=96.7%) for the fitting of quadratic model, along with the satisfactory results generated by the analysis of variance (ANOVA). All the evaluated analytical characteristics of this method: typical reaction progress curves, resulting linear calibration curve, within-day precisions at low and at high levels, and the upper and lower detection limits were, also, reported. In addition, to check the quality of the optimization and validity of the model, the assay of H2O2, in pooled serum matrix and in cosmetic samples, was performed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号