首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   338篇
  免费   46篇
  国内免费   7篇
  2020年   5篇
  2019年   6篇
  2018年   15篇
  2017年   8篇
  2016年   15篇
  2015年   13篇
  2014年   10篇
  2013年   24篇
  2012年   9篇
  2011年   9篇
  2010年   15篇
  2009年   8篇
  2008年   10篇
  2007年   8篇
  2006年   11篇
  2005年   8篇
  2004年   11篇
  2003年   7篇
  2002年   10篇
  2001年   6篇
  2000年   2篇
  1999年   11篇
  1998年   5篇
  1997年   17篇
  1996年   19篇
  1995年   18篇
  1994年   25篇
  1993年   26篇
  1992年   17篇
  1991年   12篇
  1990年   5篇
  1989年   13篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   3篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
排序方式: 共有391条查询结果,搜索用时 15 毫秒
31.
Abstract: Nonlethal alternatives are needed to manage blackbird (Icterids) damage to rice and sunflower production in the United States. We evaluated 4 registered fungicides on rice seeds (i.e., Allegiance® FL, Thiram 42-S, Trilex®, and Vitavax® 200 preplant seed treatments) and 2 foliar pesticides on sunflower seeds (Cobalt™ insecticide and Flock Buster bird repellent) as candidate blackbird repellents. Red-winged blackbirds (Agelaius phoeniceus) preferred untreated rice relative to rice treated with Thiram (P < 0.001) and Vitavax (P < 0.001), and untreated sunflower relative to sunflower treated with Cobalt (P < 0.001). Blackbirds preferred untreated sunflower relative to sunflower treated with Flock Buster repellent on day 1 of a 4-day preference test (P < 0.001). We observed no difference in consumption of treated versus untreated rice during the Allegiance preference test (P = 0.928), and blackbirds preferred rice treated with Trilex relative to untreated rice (P = 0.003). Although repellency was positively related to tested concentrations of Thiram (P = 0.010), Trilex (P = 0.026), and Vitavax (P < 0.001), maximum repellency was < 50% during our concentration-response tests of these seed treatments. Repellency was also positively related to tested concentrations of Cobalt (P < 0.001), and we observed >80% repellency of sunflower treated with Cobalt at ≥50% of the label rate. We observed no concentration-response relationship for the Allegiance seed treatment (P = 0.341) and Flock Buster repellent (P = 0.952). We recommend implementation of supplemental field studies to compare laboratory efficacy, repellency, and chemical residues of effective avian repellents throughout periods of needed crop protection.  相似文献   
32.
A simple and precise method for chiral separation of tryptophan enantiomers using high performance liquid chromatography with aligand exchange mobile phase was developed. Chiral separation was performed on a conventional C18 column, using a mobile phase that consisted of a water-methanol solution (88∶12, v/v) containing 10 mmol/Ll-leucine and 5 mmol/L copper sulfate as a chiral ligand additive at a flow rate of 1.0 mL/min. This method allowed baseline separation of two enantiomers with a resolution of 1.84 in less than 30 min. The effect of various conditions, including concentration, type of ligand, organic modifier, pH, flow rate, and temperature, on enantioseparation were evaluated and chiral recognition mechanisms were investigated. Thermodynamic data (ΔΔH and ΔΔS) obtained by van't Hoff plots revealed that enantioseparation is an enthalpy-controlled process.  相似文献   
33.
The separation of enantiomers of 16 basic drugs was studied using polysaccharide‐based chiral selectors and acetonitrile as mobile phase with emphasis on the role of basic and acidic additives on the separation and elution order of enantiomers. Out of the studied chiral selectors, amylose phenylcarbamate‐based ones more often showed a chiral recognition ability compared to cellulose phenylcarbamate derivatives. An interesting effect was observed with formic acid as additive on enantiomer resolution and enantiomer elution order for some basic drugs. Thus, for instance, the enantioseparation of several β‐blockers (atenolol, sotalol, toliprolol) improved not only by the addition of a more conventional basic additive to the mobile phase, but also by the addition of an acidic additive. Moreover, an opposite elution order of enantiomers was observed depending on the nature of the additive (basic or acidic) in the mobile phase. Chirality 27:228–234, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
34.
A high‐performance liquid chromatography (HPLC) method was established to detect Xeljanz enantiomers in active pharmaceutical ingredients (APIs) and tablets. The separation was achieved on a Chiralpak IC column using a mobile phase of hexane‐ethanol‐diethylamine (65:35:0.1, v/v). The detection wavelength was 289 nm. The peak areas and the enantiomer concentrations in the range of 0.15–2.25 μg?mL?1 were in high linearity, with correlation coefficients higher than 0.999. The recoveries were 86.44% at the concentrations of 7.5, 18.75, and 37.5 μg?mL?1. The limit of detection (LOD) and limit of quantification (LOQ) were 0.042 and 0.14 μg?mL?1, respectively. This HPLC method is suitable for detecting the enantiomers of Xeljanz in its APIs and tablets. Chirality 27:235–238, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   
35.
The stereoselective degradation of indoxacarb enriched with (+)‐S‐indoxacarb (S/R:70/30) was investigated in three typical green teas. A convenient and precise chiral method was developed and validated for measuring indoxacarb enantiomers in green tea. The developed method was based on high‐performance liquid chromatography coupled with tandem mass spectrometry using a Chiralpak IC column. The stereoselective degradation of indoxacarb enantiomers showed that the (+)‐S‐enantiomer dissipated faster than the (?)‐R‐enantiomer in all three typical tea farms. However, no enantiomerization was observed after applying pure (+)‐S‐indoxacarb. Residues on tea plant of the active ingredient (+)‐S‐indoxacarb from suspension concentrate (SC) was more persistent than that from emulsifiable concentrate (EC). Chirality 27:262–267, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
36.
The aim was to evaluate the effects of tetrahydropalmatine (THP) enantiomers on the activity of five cytochrome P450 (CYP450) isozymes in vivo. A liquid chromatography / mass spectrometric (LC‐MS) method was developed for simultaneous determination of five specific probe substrates including metoprolol (2D6), caffeine (1A2), dapsone (3A4), chlorzoxazone (2E1), and tolbutamide (2C9) in rat plasma. Analytes were separated with the mobile phase consisting of 0.1% acetic acid aqueous solution and acetonitrile in a gradient elution. The mass spectrometric detection via selected ion monitoring (SIM) was operated in both positive ion mode (for metoprolol m/z 268, caffeine m/z 195, and dapsone m/z 249) and negative ion mode (for chlorzoxazone m/z 168 and tolbutamide m/z 269) in the same run. Linear correlation was obtained (r2 > 0.99) over the concentration range of 0.050–25.0 µg/mL for caffeine and dapsone, 0.025–10.0 µg/mL for metoprolol, 0.050–50.0 µg/mL for chlorzoxazone, and 0.25–100.0 µg/mL for tolbutamide. Intra‐ and interday precision were less than 12.09%. The matrix effect ranged from 87.50% to 109.25% and the absolute recoveries were greater than 70%. The method was successfully applied to evaluate the effect of THP enantiomers on the activity of CYP450 isozymes by a cocktail approach. The pharmacokinetic results of five probe drugs indicated that there were stereoselective differences between the two THP enantiomers, i.e., d‐THP had the potential to inhibit the activities of CYP2D6 and CYP1A2 isozymes, while l‐THP inhibited CYP1A2 isozyme and induced CYP3A4 and CYP2C9 isozymes. Chirality 27:551–556, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
37.
In this study, R(+)‐α‐methylbenzylamine‐modified magnetic chiral sorbent was synthesized and assessed as a new enantioselective solid phase sorbent for separation of mandelic acid enantiomers from aqueous solutions. The chemical structures and magnetic properties of the new sorbent were characterized by vibrating sample magnetometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and dynamic light scattering. The effects of different variables such as the initial concentration of racemic mandelic acid, dosage of sorbent, and contact time upon sorption characteristics of mandelic acid enantiomers on magnetic chiral sorbent were investigated. The sorption of mandelic acid enantiomers followed a pseudo‐second‐order reaction and equilibrium experiments were well fitted to a Langmuir isotherm model. The maximum adsorption capacity of racemic mandelic acid on to the magnetic chiral sorbent was found to be 405 mg g?1. The magnetic chiral sorbent has a greater affinity for (S)‐(+)‐mandelic acid compared to (R)‐(?)‐mandelic acid. The optimum resolution was achieved with 10 mL 30 mM of racemic mandelic acid and 110 mg of magnetic chiral sorbent. The best percent enantiomeric excess values (up to 64%) were obtained by use of a chiralpak AD‐H column. Chirality 27:835–842, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
38.
A simple one‐dimensional 13C NMR method is presented to discriminate between stereoisomers of organic compounds with more than one chiral center. By means of this method it is possible to discriminate between all eight stereoisomers of α‐tocopherol. To achieve this the chiral solvating agent (S)‐(+)‐1‐(9‐anthryl)‐2,2,2‐trifluoroethanol and the compound of interest were dissolved in high concentrations in chloroform‐d, and the nuclear magnetic resonance (NMR) spectrum was recorded at a low temperature. The individual stereoisomers of α‐tocopherol were assigned by spikes of the reference compounds. The method was also applied to six other representative examples. Chirality 27:850–855, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
39.
The resolution of chiral compound‐forming systems using hybrid processes was discussed recently. The concept is of large relevance as these systems form the majority of chiral substances. In this study, a novel hybrid process is presented, which combines pertraction and subsequent preferential crystallization and is applicable for the resolution of such systems. A supported liquid membrane applied in a pertraction process provides enantiomeric enrichment. This membrane contains a solution of a chiral compound acting as a selective carrier for one of the enantiomers. Screening of a large number of liquid membranes and potential carriers using the conductor‐like screening model for realistic solvation method led to the identification of several promising carriers, which were tested experimentally in several pertraction runs aiming to yield enriched (+)‐(S)‐mandelic acid (MA) solutions from racemic feed solutions. The most promising system consisted of tetrahydronaphthalene as liquid membrane and hydroquinine‐4‐methyl‐2‐quinolylether (HMQ) as chiral carrier achieving enantiomeric excesses of 15% in average. The successful production of (+)‐(S)‐MA with a purity above 96% from enriched solutions by subsequent preferential crystallization proved the applicability of the hybrid process. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
40.
Tramadol (T) is available as a racemic mixture of (+)‐trans‐T and (−)‐trans‐T. The main metabolic pathways are O‐demethylation and N‐demethylation, producing trans‐O‐desmethyltramadol ( M1 ) and trans‐N‐desmethyltramadol ( M2 ) enantiomers, respectively. The analgesic effect of T is related to the opioid activity of (+)‐trans‐T and (+)‐ M1 and to the monoaminergic action of (+/−)‐trans‐T. This is the first study using tandem mass spectrometry as a detection system for the simultaneous analysis of trans‐T, M1 , and M2 enantiomers. The analytes were resolved on a Chiralpak® AD column using hexane:ethanol (95.5:4.5, v/v) plus 0.1% diethylamine as the mobile phase. The quantitation limits were 0.5 ng/ml for trans‐T and M1 and 0.1 ng/ml for M2 . The method developed and validated here was applied to a pharmacokinetic study in rats. Male Wistar rats (n = 6 at each time point) received a single oral dose of 20 mg/kg racemic trans‐T. Blood samples were collected up to 12 h after drug administration. The kinetic disposition of trans‐T and M2 was enantioselective (AUC(+)/(−) ratio = 4.16 and 6.36, respectively). The direction and extent of enantioselectivity in the pharmacokinetics of trans‐T and M2 in rats were comparable to data previously reported for healthy volunteers, suggesting that rats are a suitable model for enantioselective studies of trans‐T pharmacokinetics. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号