首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3286篇
  免费   364篇
  国内免费   495篇
  2024年   20篇
  2023年   55篇
  2022年   60篇
  2021年   77篇
  2020年   192篇
  2019年   179篇
  2018年   190篇
  2017年   153篇
  2016年   157篇
  2015年   161篇
  2014年   129篇
  2013年   315篇
  2012年   108篇
  2011年   174篇
  2010年   102篇
  2009年   204篇
  2008年   171篇
  2007年   182篇
  2006年   165篇
  2005年   183篇
  2004年   126篇
  2003年   157篇
  2002年   126篇
  2001年   87篇
  2000年   61篇
  1999年   69篇
  1998年   64篇
  1997年   60篇
  1996年   23篇
  1995年   52篇
  1994年   54篇
  1993年   31篇
  1992年   31篇
  1991年   30篇
  1990年   20篇
  1989年   31篇
  1988年   17篇
  1987年   14篇
  1986年   10篇
  1985年   20篇
  1984年   14篇
  1983年   11篇
  1982年   18篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1976年   5篇
  1973年   2篇
排序方式: 共有4145条查询结果,搜索用时 281 毫秒
971.
Three new coordination polymers based on IB metal thiocyanates, [CuII(NCS)2(DMSO)4(meso-dpb)]n (1), (2), [CuI(NCS)(pia)]n (3) (dpb = 2,3-di(4-pyridyl)-2,3-butanediol, bpp = 1,3-bis(4-pyridyl)propane, pia = N,N′-(1,2-phenylene)diisonicotinamide), have been synthesized by the pre-assembly method and characterized by X-ray crystallography. In 1, CuII cations are bridged by meso-dpb ligands to form a one-dimensional (1D) linear chain. Compound 2 consists of 2D undulated layers of (4, 4) topology that show twofold parallel interpenetration. In the case of 3, the MI center adopts tetrahedral coordination geometry and the 2D networks are formed by organic ligand with “folding ruler-shaped” NCS-M chains. The thermal properties of 1-3 were also investigated.  相似文献   
972.
A facile synthetic procedure has been used to prepare one five-coordinate and four six-coordinate copper(II) complexes of 4′-chloro-2,2′:6′,2″-terpyridine (tpyCl) ligand with different counterions (, , , , and ) in high yields. They are formulated as [Cu(tpyCl-κ3N,N,N′′)(SO4-κO)(H2O-κO)] · 2H2O (1), trans-[Cu(tpyCl-κ3N,N,N″)(NO3-κO)2(H2O-κO)] (2), [Cu(tpyCl-κ3N,N,N″)2](BF4)2 (3), [Cu(tpyCl-κ3N,N,N″)2](PF6)2 (4) and [Cu(tpyCl-κ3N,N,N″)2](ClO4)2 (5) and versatile interactions in supramolecular level including coordinative bonding, O-H?O, O-H?Cl, C-H?F, and C-H?Cl hydrogen bonding, π-π stacking play essential roles in forming different frameworks of 1-5. It is concluded that the difference of coordination abilities of the counterions used and the experimental conditions codominate the resulting complexes with 1:1 or 1:2 ratio of metal and ligand.  相似文献   
973.
Changes in continental ostracode shell chemistry; uncertainty of cause   总被引:1,自引:0,他引:1  
Ostracode shell chemistry is a powerful tool for recording changes of certain dissolved ions in their environment. Such data are commonly interpreted in terms of change in temperature and salinity, which are then used to offer insights into paleohydrology and from that paleoclimate. In particular, the changes in Sr/Cashell are believed to reflect changes in salinity, and the changes in Mg/Cashell to reflect both salinity and water temperature. However, the established application of this proxy too often ignores the complexities involved in the chemical changes accompanying solute evolution, hydrologic change, physical chemistry, and the autoecology and biology of ostracodes. Chemical changes occur: (1) in the dissolved Mg/Ca and Sr/Ca ratios during solute evolution, (2) as a consequence of multiple sources of water, but especially ground and surface water interchange as well as evaporation, (3) as a consequence of different dissolved cation–anion pair formation at various concentrations, and (4) because of bio/ecologic effects, including seasonality of molting and taxa-specific ionic regulation capabilities. We suggest that changes in shell chemistry in a stratigraphic sequence tell us when changes occurred in the solutes, but cannot identify what caused those change(s) in the chemical environment. Inclusion of information from other paleoenvironmental and paleoclimatic proxies that co-occur with ostracode shells may help to limit the choices amongst possible causes.
Emi ItoEmail:
  相似文献   
974.
The title complexes are synthesized by the reaction of an unusual ligand of [K2P2W18(UO2)2O68]12− (1) and [KAs2W18(UO2)2O68]13− (2) with divalent metal ions of CoII, CuII, MnII, NiII and ZnII in 1:2 mole ratio and are characterized by elemental analysis, IR, 31P NMR, UV-Vis spectroscopy, TGA, and single crystal structure analysis. Crystals of [P2W18(UO2)2{(H2O)3Co}2O68]10− (1a) and [As2W18(UO2)2{(H2O)3Cu}2O68]10− (2b) are orthorhombic space group Cmca. Both 1a and 2b have structures in which two [M(H2O)3] (M = CoII, CuII) and two UO2 groups are sandwiched between two symmetry equivalent (XW9) (X = P, As) units in a virtual Ci symmetry. In solution, 1a and [P2W18(UO2)2{(H2O)3Zn}2O68]10− (1d) give two-line P NMR spectra that are consistent with a Cs symmetry structures so, are not consistent with the solid-state structures. The sodium salts of them give one-line P NMR spectra and are consistent with the Ci symmetry of solid-state structures. The uranium atoms have pentagonal-bipyramidal coordination, achieved by three equatorial bonds to the one XW9 and two bonds to the other. The M atoms have octahedral or square pyramidal coordination, but only one bond to the one XW9 and one bond to the other.  相似文献   
975.
[M(P3C2tBu2)(CO)3I] (M = Mo, 1, W, 2) have been synthesised and reacted with PCl5 for oxidation study purposes. Compounds Ti(P3C2tBu2)(Ind)Cl2], 3, and [Zr(P3C2tBu2)(Cp)Cl2], 4, were detected spectroscopically, but showed to be too unstable to be isolated. A Ti(IV) complex, [Ti(P3C2tBu2)Cl3], 5, has been formed from the reaction of [TiCl4] with the base-free ligand K(P3C2tBu2), while the Ti(III) species, [Ti(P3C2tBu2) Cl2(THF)], 6, was prepared from [TiCl3(THF)3]. Compounds 5 and 6 were studied as ethylene catalyst precursors after activation with MAO. In the studied conditions, complex 5 is the most active one with an activity of 2.2 × 105 g(molTi [E] h)−1, one order of magnitude higher than compound 6. The produced polymer is linear polyethylene.  相似文献   
976.
The formation reactions of hydrophobic metal complexes of divalent typical element and transition metal ions with a novel chelating ligand containing N and O donor atoms, 4,5-bis(diphenylphosphinoyl)-1,2,3-triazole (LTH), were investigated by the liquid-liquid distribution method carried out on metal ions between chloroform and aqueous solutions. The liquid-liquid distribution reaction formulae of metal ions via the formation of hydrophobic metal complexes were revealed, along with their equilibrium constants. Three types of hydrophobic mononuclear and binuclear metal complexes distributed into chloroform solutions were found, namely, ML2 (M = Mg2+, Zn2+, Pb2+; L = LT−), ML2(HL) (M = Cd2+, Mn2+), and M2L3(OH) (M = Co2+, Ni2+, Cu2+). Linear free energy relationships were found between the equilibrium constants of the liquid-liquid distribution reactions and the stability constants of 1:1 complexes consisting of a divalent metal ion and a glycinate. These relationships suggest the chelate formation of N,O-coordination with a heterocyclic five-membered ring in the metal complexes with LTH.  相似文献   
977.
The perchlorate M(II) (M = Cu, Ni, Co) complexes with the diethyl (pyridin-4-ylmethyl)phosphate (4-pmOpe) ligand of the composition [M(4-pmOpe)2 (H2O)2](ClO4)2 (M = Ni, Co) and [Cu(4-pmOpe)2(ClO4)2] were prepared and studied. The ligand contains two donor atoms, i.e. pyridine nitrogen and phosphoryl oxygen atoms. In particular, the crystal structure of [Cu(4-pmOpe)2(ClO4)2] was determined by the X-ray method. Its structure consists of a one-dimensional polymeric chain in which copper(II) ions are N,O-bridged by two 4-pmOpe organic ligands in a trans arrangement. Two perchlorate ions occupy the fifth and the sixth coordination sites. The Cu?Cu distance is 9.180 Å. The crystal packing is determined by the weak intermolecular C-H?O hydrogen contacts. The coordination compounds were identified and characterized by elemental analysis, spectroscopic and magnetic studies. Spectroscopic and magnetic results of the copper(II) compound are presented in the light of the crystal structure. The magnetic data indicate very weak intra- and interchain magnetic exchange interactions (J = −0.43 and zJ = 0.29 cm−1, respectively). The spectroscopic and magnetic properties of the Co(II) and Ni(II) complexes indicate octahedral and polymeric structure of both compounds in which 4-pmOpe ligand also acts as N,O-bridge between metal ions.  相似文献   
978.
Diamido-supported rare earth metal amides with the general formula {(CH2SiMe2)[(2,6-iPr2C6H3)N]2}LnN(SiMe3)2(THF) [(Ln = Yb(1), Y(2), Dy(3), Sm (4), Nd (5)] were found to be highly efficient catalysts for the guanylation of both aromatic and heterocyclic amines under mild conditions. It is found that these catalysts are compatible with a wide range of substituents such as iPr, Me, and MeO having electron-donating property and substituents such as Cl, Br, and O2N having electron-withdrawing property on the aromatic rings of the aromatic or the heterocyclic amines. The methodology has also the advantages of easy preparation of the catalysts, quick conversion of the substrates to products, mild reaction conditions, and low catalyst loading.  相似文献   
979.
Marker-free transgenic white poplar (Populus alba L., cv ‘Villafranca’) plants, expressing the PsMT A1 gene from Pisum sativum for a metallothionein-like protein, were produced by Agrobacterium tumefaciens-mediated transformation. The 35SCaMV-PsMT A1 -NosT cassette was inserted into the ipt-type vector pMAT22. The occurrence of the abnormal ipt-shooty phenotype allowed the visual selection of transformants, while the yeast site-specific recombination R/RS system was responsible for the excision of the undesired vector sequences with the consequent recovery of normal marker-free transgenic plants. Molecular analyses confirmed the presence of the 35SCaMV-PsMT A1 -NosT cassette and transgene expression. Five selected lines were further characterized, revealing the ability to withstand heavy metal toxicity. They survived 0.1 mM CuCl2, a concentration which strongly affected the nontransgenic plants. Moreover, root development was only slightly affected by the ectopic expression of the transgene. Reactive oxygen species were accumulated to a lower extent in leaf tissues of multi-auto-transformation (MAT)-PsMTA1 plants exposed to copper and zinc, compared to control plants. Tolerance to photo-oxidative stress induced by paraquat was another distinctive feature of the MAT-PsMTA1 lines. Finally, low levels of DNA damage were detected by quantifying the amounts of 8-hydroxy-2′-deoxyguanosine in leaf tissues of the transgenic plants exposed to copper.  相似文献   
980.
The effects of ‘alperujo’ compost on trace element availability and on microbial activity of two contaminated soils, a calcareous soil (S1) with high contents of Pb and Zn, and an acidic soil (S2) with a substantial amount of Al, As, Pb and Zn, were assessed. Additionally, the growth and capacity for contaminant phytoextraction of five Brassica species were studied. Compost amendment did not affect S1, but in S2 it increased soil pH, thus reducing Al and Zn bioavailability and toxicity. Compost application also increased microbial population and bioactivity in both soils. Brassica plants did not survive in S2, yet they thrived in S1. When compost was applied to S2, Brassica carinata, Brassica napus and Brassica oleracea grew adequately. Considering both the capacity to accumulate trace elements in the shoot and the ability to grow in the contaminated soils tested, the most efficient phytoextractors were Brassica juncea in S1 (particularly for Zn) and Brassica oleracea in S2 (for Al, As, Pb and Zn).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号