首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3249篇
  免费   324篇
  国内免费   484篇
  2024年   20篇
  2023年   54篇
  2022年   59篇
  2021年   75篇
  2020年   185篇
  2019年   170篇
  2018年   170篇
  2017年   147篇
  2016年   147篇
  2015年   149篇
  2014年   129篇
  2013年   305篇
  2012年   105篇
  2011年   168篇
  2010年   103篇
  2009年   203篇
  2008年   169篇
  2007年   183篇
  2006年   163篇
  2005年   185篇
  2004年   124篇
  2003年   154篇
  2002年   127篇
  2001年   82篇
  2000年   61篇
  1999年   72篇
  1998年   58篇
  1997年   61篇
  1996年   25篇
  1995年   55篇
  1994年   54篇
  1993年   32篇
  1992年   32篇
  1991年   26篇
  1990年   22篇
  1989年   32篇
  1988年   20篇
  1987年   16篇
  1986年   9篇
  1985年   18篇
  1984年   17篇
  1983年   12篇
  1982年   17篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   6篇
  1977年   4篇
  1976年   6篇
  1973年   2篇
排序方式: 共有4057条查询结果,搜索用时 46 毫秒
41.
42.
The influence of chromium concentration on ethylene production in bean plants ( Phaseolus vulgaris L. cv. Contender) was investigated. A Cr ion-induced inhibition of ethylene synthesis from endogenous 1-aminocyclopropane-1-carboxylic acid (ACC) was observed within both leaf discs floated on 2 m M CrO2−4 or Cr3+ and leaf discs from plants cultured in nutrient solutions containing 10, 20 or 40 μ M CrO2−4. However, Cr ions supplied either to plants with the nutrient solution or to discs with the incubation medium rather increased the conversion of exogenous ACC to ethylene. Primary leaves of plants exposed to CrO2−4-containing nutrient solutions showed a statistically insignificant decrease of ACC-synthase activity. In the trifoliolate leaves of plants exposed to 10 μ M CrO2−4, in which a significant decrease of ethylene production from endogenous ACC was observed, a substantial increase of ACC synthase was found. These results indicate that Cr ion-induced inhibition of ethylene production is not due to a breakdown of membrane integrity, which is necessary for ethylene forming enzyme activity, but caused by metabolic alterations leading to decreased ACC availability. Chromium ions may act by inhibiting ACC synthase activity or by diverting a metabolic step prior to the ACC synthase catalyzed reaction.  相似文献   
43.
The effect of size on the accumulation of Cd, Cr, Cu, Mn, Ni, Fe and Zn in the muscle and viscera of the gastropodsMonodonta turbinata andCerithium vulgatum was investigated. The concentration of the essential metals Cr, Mn and Ni and the non-essential metal Cd decreased with increasing size in both of the species and tissues. The concentration of the essential metals Cu, Fe and Zn, showed a less constant relation with size.  相似文献   
44.
Gary Brown 《Plant Ecology》1994,115(1):77-90
The vegetation at various sites within two separate areas (Mechernich and Aachen) of the Eifel Mountains, Germany/Belgium, both characterized by elevated concentrations of heavy metals in their soils, was surveyed in order to investigate the relationships between soil chemical attributes and floristic composition. In both areas, the typical heavy metal communities can form distinct zones, clearly separated from the surrounding heavy metal-sensitive vegetation. However, an intergrading of heavy metal-tolerant and-sensitive vegetation types is not uncommon and such overlaps can occupy large areas. In Mechernich, soil toxicity is primarily determined by the effects of lead, which is best expressed in terms of the Pb/Ca ratio rather than the absolute levels of this metal in the soil. Soils of heavy metal-sensitive vegetation types have a low Pb/Ca ratio, whereas it is considerably higher in areas supporting heavy metal vegetation. Zinc appears to exert little influence on the floristic composition of the investigated vegetation types. In Aachen, zinc is the predominant heavy metal determining vegetation development. Absolute zinc levels of soils do not accurately reflect zinc toxicity. Analogous to the role of the Pb/Ca ratio in the Mechernich area, the Zn/Ca ratio not only separates heavy metal-sensitive and highly tolerant vegetation units, but also gives a good indication of the gradient operating between the two vegetation types. Lead is probably only of local importance in influencing species composition.  相似文献   
45.
Escherichia coli, genetically engineered with a mercury(II)-sensitive promoter and the lux genes from Vibrio fischeri, were used as microbial bioluminescent sensors for the detection of mercury. Evaluation of this genetic construction was carried out by determining the effects of various parameters on cell suspensions maintained at constant conditions in a small 100-mL vessel. The strongest light intensities and quickest induction times occurred with cells in the midexponential growth phase maintained at 28 degrees C, concentrated to 1 x 10(9) cells/mL, mixed at very fast speeds, and aerated at 2 vvm (volume of air per volume of culture per minute) during light measurement in the small vessel. The cells were sensitive to the mercuric ion in the range of 20 nM to 4 muM (4 to 800 ppb), and the total response time was on the order of 1 hour, depending on the above parameters. The cells exhibited great specificity for mercury. The cells had almost equal specificity for organic and inorganic forms of the mercuric ion and responded more weakly to the mercurous ion. A simple, inexpensive, durable miniature probe (3 mL) was constructed and operated using the optimum parameters found in the small vessel as a guide. The range of sensitivity to the mercuric ion detected in the probe was 10 nM to 4 muM when aeration was provided. (c) 1993 John Wiley & Sons, Inc.  相似文献   
46.
Thirty nine clinical isolates of Acinetobacter belonging to six species were tested for resistance to 20 metal ions and their ability to produce -lactamase. Fifty two percent of the strains produced -lactamase. -Lactamase producers and non-producers were almost equally distributed in the different species. A. baumannii was the predominant biotype and was found to be most resistant to metals. Resistance to mercury was prevalent in -lactamase-producing A. baumannii only. Silver resistant strains of A. baumannii produced -lactamase. Sensitivity and resistance to copper and cadium was equally distributed between -lactamase producers and non-producers. -Lactamase-producer and -non-producer strains were uniformly sensitive to cadmium except Acinetobacter genospecies 1.  相似文献   
47.
Growth of cells in a new defined protein-free medium   总被引:1,自引:0,他引:1  
The development of a new stable synthetic serum replacement (SSR) is described, which allows the cultivation of mammalian cells in a defined, protein-free medium containing only dialyzable components. With a low concentration of insulin (RPMI-SR2 medium), growth rates of the transformed cell lines L929, HELA S3, and the hybridoma 1E6 were comparable to growth rates obtained with a serum-containing medium. The same medium also supported long-term cultivation of non-dividing mouse macrophages. The main principle of SSR is a metal ion buffer containing a balanced mixture of iron and trace metals. Stability against precipitation of important metals is achieved by the combined use of EDTA and citric acid as chelating agents. Efficient iron supply is mediated through the inclusion of the compound Aurintricarboxylic acid as a synthetic replacement for transferrin. SSR also contains a growth-promoting surfactant, Pluronic F68. Thus SSR provides a general foundation for growth and differentiation normally provided by serum.Limitations of other serum-free medium designs are discussed here: 1) the inability of transferrin to chelate all metals in the medium; and 2) the use of inorganic iron salts or iron citrate as an iron supplement leads to rapid precipitation of iron hydroxide in the medium. Both these problems are solved in the design of SSR.  相似文献   
48.

Arsenic (As) contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world. Therefore, the present study was designed to investigate the individual as well as the combined effects of exogenous silicon (Si) and sodium nitroprusside (SNP), a nitric oxide (NO) donor, on plant growth, metabolites, and antioxidant defense systems of radish (Raphanus sativus L.) plants under three different concentrations of As stress, i.e., 0.3, 0.5, and 0.7 mM in a pot experiment. The results showed that As stress reduced the growth parameters of radish plants by increasing the level of oxidative stress markers, i.e., malondialdehyde and hydrogen peroxide. However, foliar application of Si (2 mM) and pretreatment with SNP (100 µM) alone as well as in combination with Si improved the plant growth parameters, i.e., root length, fresh and dry weight of plants under As stress. Furthermore, As stress also reduced protein, and metabolites contents (flavonoids, phenolic and anthocyanin). Activities of antioxidative enzymes such as catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD), and polyphenol oxidase (PPO), as well as the content of non-enzymatic antioxidants (glutathione and ascorbic acid) decreased under As stress. In most of the parameters in radish, As III concentration showed maximum reduction, as compared to As I and II concentrations. However, the individual and combined application of Si and NO significantly alleviated the As-mediated oxidative stress in radish plants by increasing the protein, and metabolites content. Enhancement in the activities of CAT, APX, POD and PPO enzymes were recorded. Contents of glutathione and ascorbic acid were also enhanced in response to co-application of Si and NO under As stress. Results obtained were more pronounced when Si and NO were applied in combination under As stress, as compared to their individual application. In short, the current study highlights that Si and NO synergistically regulate plant growth through lowering the As-mediated oxidative stress by upregulating the metabolites content, activity of antioxidative enzymes and non-enzymatic antioxidants in radish plants.

  相似文献   
49.
Although Platycodon grandiflorum (Jacq.) A.DC. is a renowned medicine food homology plant, reports of excessive cadmium (Cd) levels are common, which affects its safety for clinical use and food consumption. To enable its Cd levels to be regulated or reduced, it is necessary to first elucidate the mechanism of Cd uptake and accumulation in the plant, in addition to its detoxification mechanisms. This present study used inductively couple plasma-mass-spectrometry to analyze the subcellular distribution and chemical forms of Cd in different tissues of P. grandiflorum. The experimental results showed that Cd was mainly accumulated in the roots [predominantly in the cell wall (50.96%–61.42%)], and it was found primarily in hypomobile and hypotoxic forms. The proportion of Cd in the soluble fraction increased after Cd exposure, and the proportion of insoluble phosphate Cd and oxalate Cd increased in roots and leaves, with a higher increase in oxalate Cd. Therefore, it is likely that root retention mechanisms, cell wall deposition, vacuole sequestration, and the formation of low mobility and low toxicity forms are tolerance strategies for Cd detoxification used by P. grandiflorum. The results of this study provide a theoretical grounding for the study of Cd accumulation and detoxification mechanisms in P. grandiflorum, and they can be used as a reference for developing Cd limits and standards for other medicine food homology plants.  相似文献   
50.
The toxicity of three heavy metals, Cd, Cu and Zn, and the detoxifying role of Ca have been studied for the brown algaCystoseira barbata formaaurentia after a 4-week laboratory culture. The experimental design was based upon a complete factorial design 2k, which seems to be the first time it has been used in algal physiology. It was demonstrated that these three elements, applied jointly, act on weight-growth, chlorophyll a, c and carotenoid synthesis and Cd, Cu and Zn uptake. Cd and Zn act in synergy or in antagony, depending on their exogenous concentrations, on chlorophyll a and on carotenoid synthesis. Zn is antagonistic towards Cd and Cu on weight-growth in the combination Cd-Cu-Zn. From different element combinations, the protective role of Ca appears evident on weight-growth (Cd-Zn-Ca and Cu-Ca), chlorophyll a (Cd-Cu-Ca and Cu-Zn-Ca), chlorophyll c (Cd-Ca), carotenoid synthesis (Cd-Cu-Ca and Cu-Zn-Ca), Cd and Cu uptake (Cd-Cu-Ca) and Zn uptake (Cu-Zn-Ca). This role is confirmed by cytological investigations. This is apparently the first report concerning a Ca interaction with toxicity of heavy metals applied in combinations. However, the mechanisms of tolerance remain unknown.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号