首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5181篇
  免费   550篇
  国内免费   777篇
  2024年   20篇
  2023年   172篇
  2022年   194篇
  2021年   268篇
  2020年   263篇
  2019年   273篇
  2018年   258篇
  2017年   231篇
  2016年   247篇
  2015年   245篇
  2014年   281篇
  2013年   424篇
  2012年   232篇
  2011年   261篇
  2010年   221篇
  2009年   238篇
  2008年   227篇
  2007年   265篇
  2006年   224篇
  2005年   234篇
  2004年   191篇
  2003年   176篇
  2002年   149篇
  2001年   108篇
  2000年   101篇
  1999年   81篇
  1998年   78篇
  1997年   83篇
  1996年   69篇
  1995年   75篇
  1994年   72篇
  1993年   43篇
  1992年   39篇
  1991年   61篇
  1990年   44篇
  1989年   41篇
  1988年   32篇
  1987年   39篇
  1986年   29篇
  1985年   36篇
  1984年   25篇
  1983年   16篇
  1982年   34篇
  1981年   27篇
  1980年   22篇
  1979年   15篇
  1978年   8篇
  1976年   11篇
  1975年   9篇
  1974年   7篇
排序方式: 共有6508条查询结果,搜索用时 312 毫秒
61.
Carbon-13 nuclear magnetic resonance (NMR) spectroscopy was used to study the metabolism of a murine hybridoma cell line at two feed glutamine concentrations, 4.0 and 1.7 mM. Carbon-13 labeling patterns were used in conjunction with nutrient uptake rates to calculate the metabolic fluxes through the glycolytic pathway, the pentose shunt, the malate shunt, lipid biosynthesis, and the tricarboxylic acid (TCA) cycle. Decreasing the feed glutamine concentration significantly decreased glutamine uptake but had little effect on glucose metabolism. A significant incrase in antibody productivity occurred upon decreasing the feed glutamine level. The increased antibody productivity in concert with decreased glutamine uptake and no apparent change in glucolytic metabolism suggests that antibody production was not energy limited. Metabolic flux calculations indicate that (1) approximately 92% of the glucose consumed proceeds directly through glycolysis with 8% channeled through the pentose shunt; (2) lipid biosynthesis appears to be greater than malate shunt activity; and (3) considerable exchange occurs between TCA cycle intermediates and amino acid metabolic pools, leading to substantial loss of (13)C label from the TCA cycle. These results illustrate that (13)NMR spectroscopy is a powerfulf tool in the calculation of metabolic fluxes, particularly for exchange pathways where no net flux occurs. (c) 1994 John Wiley & Sons, Inc.  相似文献   
62.
63.
The simultaneous growth and product formation in a microbial culture is an important feature of several laboratory, industrial, and environmental bioprocesses. Metabolic burden associated with product formation in these bioprocesses may lead to growth advantage of a nonproducing mutant leading to a loss of the producing population over time. A simple population dynamics model demonstrates the extreme sensitivity of population stability to the engineered productivity of a strain. Here we use flux balance analysis to estimate the effects of the metabolic burden associated with product secretion on optimal growth rates. Comparing the optimal growth rates of the producing and nonproducing strains under a given processing condition allows us to predict the population stability. In order to increase stability of an engineered strain, we determine processing conditions that simultaneously maximize the growth rate of the producing population while minimizing the growth rate of a nonproducing population. Using valine, tryptophan, and lysine production as specific examples, we demonstrate that although an appropriate choice of oxygenation may increase culture longevity more than twofold, total production as governed by economic criterion can be increased by several orders of magnitude. Choice of optimal nutrient and oxygen supply rates to enhance stability is important both for strain screening as well as for culture of engineered strains. Appropriate design of the culture environment can thus be used to enhance the productivity of bioprocesses that use engineered production strains. (c) 1994 John Wiley & Sons, Inc.  相似文献   
64.
Homogeneous population structure in a migrant Lepidoptera, Agrotis ipsilon. Light trapping of Agrotis ipsilon (Lepidoptera, Noctuidae) on various passes of the Alps and Pyrénées exhibited wide range movements between overwintering and aestivation areas. Electrophoretic analysis of samples taken in the Cantons of Vaud and Tessin (Switzerland), in the Rhône Delta (Southern France), and on passes of the Alps and Pyrénées, showed a great temporal and spatial homogeneity of allele frequencies (Fst values ranging from 0.002 to 0.013, and genetic distances from 0 to 0.004). These results support the hypothesis of a high level of gene flow. However, the occurrence during some years of high Fis values, might be explained by mixtures of populations that had undergone selection or went through a bottle-neck.  相似文献   
65.
It has long been recognized that the bipedal posture reduces the surface area of the body exposed to the sun. In recent years, a theory has been developed by Wheeler that bipedalism evolved in the ancestor of the Hominidae in order to help relieve thermal stress on the animals in open equatorial environments. Bipedalism was said to afford a distinct adaptive advantage over quadrupedalism by permitting hominids to remain active in the open throughout the day. The heat load of the hypothetical hominid comprises the external environment as modelled by Wheeler and the animal's internal environment (i.e., the internal heat generated by its metabolic and locomotor activities, and its evaporative and respirative cooling capacities). When these factors are integrated in the calculation of the animal's thermal budget, the putative advantage of the bipedal over the quadrupedal posture is considerably reduced. The simulations conducted in this study suggest that the increased time afforded to early hominids in the open by bipedalism was relatively short and, therefore, of little or no adaptive significance. These results suggest that thermoregulatory considerations cannot be implicated as a first cause in the evolution of bipedalism in the hominid ancestor.  相似文献   
66.
67.
Feedback control of gene expression   总被引:24,自引:0,他引:24  
  相似文献   
68.
Gas exchange and dry-weight production in Opuntia ficus-indica, a CAM species cultivated worldwide for its fruit and cladodes, were studied in 370 and 750 μmol mol−1 CO2 at three photosynthetic photon flux densities (PPFD: 5, 13 and 20 mol m−2 d−1). Elevated CO2 and PPFD enhanced the growth of basal cladodes and roots during the 12-week study. A rise in the PPFD increased the growth of daughter cladodes; elevated CO2 enhanced the growth of first-daughter cladodes but decreased the growth of the second-daughter cladodes produced on them. CO2 enrichment enhanced daily net CO2 uptake during the initial 8 weeks after planting for both basal and first-daughter cladodes. Water vapour conductance was 9 to 15% lower in 750 than in 370 μmol mol−1 CO2. Cladode chlorophyll content was lower in elevated CO2 and at higher PPFD. Soluble sugar and starch contents increased with time and were higher in elevated CO2 and at higher PPFD. The total plant nitrogen content was lower in elevated CO2. The effect of elevated CO2 on net CO2 uptake disappeared at 12 weeks after planting, possibly due to acclimation or feedback inhibition, which in turn could reflect decreases in the sink strength of roots. Despite this decreased effect on net CO2 uptake, the total plant dry weight at 12 weeks averaged 32% higher in 750 than in 370 μmol mol−1 CO2. Averaged for the two CO2 treatments, the total plant dry weight increased by 66% from low to medium PPFD and by 37% from medium to high PPFD.  相似文献   
69.
Metabolic engineering of plant secondary products   总被引:5,自引:0,他引:5  
Plants interact with their environment by producing a diverse array of secondary metabolites. Many of these compounds are valued for their medicinal, industrial or agricultural properties. Other secondary products are toxic or otherwise undesirable and can reduce the commercial value of crops. Gene transfer technology offers new opportunities to modify directly plant secondary product synthesis through metabolic engineering. This article reviews some of the strategies which have been used to increase or decrease the synthesis of specific plant metabolites, as well as methods for expanding the biosynthetic capabilities of individual species.  相似文献   
70.
We have previously shown that volatile anesthetics inhibit glutamate-stimulated [3H]MK-801 binding to the ionophore of NMDA receptor complexes in rat brain. In the present study, we examined the influence of enflurane and halothane on NMDA-stimulated45Ca uptake by a microvesicle fraction isolated from rat brain. NMDA stimulated45Ca uptake (30 sec) by rat brain microvesicles by up to 70% with an EC50 of 1.4±0.5 M. The NMDA-stimulated45Ca uptake was inhibited by MK-801 and D-AP-5 with IC50's of 10 M. Enflurane and halothane inhibited45Ca uptake stimulated by 100 M NMDA by as much as 60–80% with IC50's of 0.2–0.3 mM, concentrations achieved during routine clinical use. Basal45Ca uptake measured in the absence of agonist was not affected by the anesthetics. Glycine did not affect the level of NMDA-stimulated45Ca uptake, but markedly reduced the inhibition of uptake caused by enflurane and halothane. Preincubation of microvesicles with NMDA resulted in a desensitization of NMDA-stimulated45Ca uptake, with a t1/2 of 20 sec. Enflurane and halothane diminished both the extent and rate of development of this desensitization, as did glycine. These findings support the idea that volatile anesthetic interference with neurotransmission at NMDA receptor complexes contributes to the development of the anesthetic state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号