首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   65篇
  国内免费   16篇
  2024年   2篇
  2023年   41篇
  2022年   17篇
  2021年   33篇
  2020年   44篇
  2019年   63篇
  2018年   31篇
  2017年   29篇
  2016年   15篇
  2015年   14篇
  2014年   8篇
  2013年   2篇
  2012年   1篇
排序方式: 共有300条查询结果,搜索用时 46 毫秒
291.
DNA barcoding approaches have greatly increased our understanding of biodiversity on the planet, and metabarcoding is widely used for classifying members of the phylum Nematoda. However, loci typically utilized in metabarcoding studies are often unable to resolve closely related species or are unable to recover all taxa present in a sample due to inadequate PCR primer binding. Mitochondrial metagenomics (mtMG) is an alternative approach utilizing shotgun sequencing of total DNA to recover the mitochondrial genomes of all species present in samples. However, this approach requires a comprehensive reference database for identification and currently available mitochondrial sequences for nematodes are highly dominated by sequences from the order Rhabditida, and excludes many clades entirely. Here, we analysed the efficacy of mtMG for the recovery of nematode taxa and the generation of mitochondrial genomes. We first developed a curated reference database of nematode mitochondrial sequences and expanded it with 40 newly sequenced taxa. We then tested the mito-metagenomics approach using a series of nematode mock communities consisting of morphologically identified nematode species representing various feeding traits, life stages, and phylogenetic relationships. We were able to identify all but two species through the de novo assembly of COX1 genes. We were also able to recover additional mitochondrial protein coding genes (PCGs) for 23 of the 24 detected species including a full array of 12 PCGs from five of the species. We conclude that mtMG offers a potential for the effective recovery of nematode biodiversity but remains limited by the breadth of the reference database.  相似文献   
292.
The Lund collection is one of the oldest subfossil collections in the world. The vast assemblage of subfossils was collected in the 1830s and 1840s by Peter Wilhelm Lund in Lagoa Santa, Brazil, and was shipped to Copenhagen in 1848, where it was stored in various locations around the city with little attention for the future preservation of the collection. So far, successful genetic research on the material collected by Lund has been limited to two samples of human petrous bone. However, less is known about the preservation conditions of the vast amounts of small and fragmentary bones stored in the collection. To address this, we studied ancient DNA from bulk bone samples of approximately 100 bone fragments from the P.W. Lund collection from boxes with varying degrees of physical preservation conditions. Using bulk bone metabarcoding, we found a high species diversity in all samples. In total, we identified 17 species, representing 11 mammals, two birds, one fish, and three frogs. Of these, two species are new to the collection. Collectively, these results exhibit the potential of future genetic studies on the famous P.W. Lund collection and suggest that the effects of poor storage conditions are probably negligible compared with the long‐term in situ degradation that specimens undergo before excavation.  相似文献   
293.
The ability to gather genetic information using DNA metabarcoding of bulk samples obtained directly from the environment is crucial to determine biodiversity baselines and understand population dynamics in the marine realm. While DNA metabarcoding is effective in evaluating biodiversity at community level, genetic patterns within species are often concealed in metabarcoding studies and overlooked for marine invertebrates. In the present study, we implement recently developed bioinformatics tools to investigate intraspecific genetic variability for invertebrate taxa in the Mediterranean Sea. Using metabarcoding samples from Autonomous Reef Monitoring Structures (ARMS) deployed in three locations, we present haplotypes and diversity estimates for 145 unique species. While overall genetic diversity was low, we identified several species with high diversity records and potential cryptic lineages. Further, we emphasize the spatial scale of genetic variability, which was observed from locations to individual sampling units (ARMS). We carried out a population genetic analysis of several important yet understudied species, which highlights the current knowledge gap concerning intraspecific genetic patterns for the target taxa in the Mediterranean basin. Our approach considerably enhances biodiversity monitoring of charismatic and understudied Mediterranean species, which can be incorporated into ARMS surveys.  相似文献   
294.
295.
The microbiomes associated with bee nests influence colony health through various mechanisms, although it is not yet clear how honeybee congeners differ in microbiome assembly processes, in particular the degrees to which floral visitations and the environment contribute to different aspects of diversity. We used DNA metabarcoding to sequence bacterial 16S rRNA from honey and stored pollen from nests of 4 honeybee species (Apis cerana, A. dorsata, A. florea, and A. laboriosa) sampled throughout Yunnan, China, a global biodiversity hotspot. We developed a computational pipeline integrating multiple databases for quantifying key facets of diversity, including compositional, taxonomic, phylogenetic, and functional ones. Further, we assessed candidate drivers of observed microbiome dissimilarity, particularly differences in floral visitations, habitat disturbance, and other key environmental variables. Analyses revealed that microbiome alpha diversity was broadly equivalent across the study sites and between bee species, apart from functional diversity which was very low in nests of the reclusive A. laboriosa. Turnover in microbiome composition across Yunnan was driven predominantly by pollen composition. Human disturbance negatively impacted both compositional and phylogenetic alpha diversity of nest microbiomes, but did not correlate with microbial turnover. We herein make progress in understanding microbiome diversity associated with key pollinators in a biodiversity hotspot, and provide a model for the use of a comprehensive informatics framework in assessing pattern and drivers of diversity, which enables the inclusion of explanatory variables both subtly and fundamentally different and enables elucidation of emergent or unexpected drivers.  相似文献   
296.
Studies of the ecological effects of global change often focus on one or a few species at a time. Consequently, we know relatively little about the changes underway at real-world scales of biological communities, which typically have hundreds or thousands of interacting species. Here, we use COI mtDNA amplicons from monthly samples of environmental DNA to survey 221 planktonic taxa along a gradient of temperature, salinity, dissolved oxygen and carbonate chemistry in nearshore marine habitat. The result is a high-resolution picture of changes in ecological communities using a technique replicable across a wide variety of ecosystems. We estimate community-level differences associated with time, space and environmental variables, and use these results to forecast near-term community changes due to warming and ocean acidification. We find distinct communities in warmer and more acidified conditions, with overall reduced richness in diatom assemblages and increased richness in dinoflagellates. Individual taxa finding more suitable habitat in near-future waters are more taxonomically varied and include the ubiquitous coccolithophore Emiliania huxleyi and the harmful dinoflagellate Alexandrium sp. These results suggest foundational changes for nearshore food webs under near-future conditions.  相似文献   
297.
Gut microbial communities play critical roles in the biological functions of their host, such as mediating nutrient absorption, digesting food components the host cannot, and offering protection against enteric pathogens. Extensive research on gut microbial communities has been conducted on mammals, including humans and rodents, but much less work has been done in birds. Furthermore, much of the research on host–microbe interactions make use of faecal samples and rectal/cloacal swabs as a proxy for intestinal samples, which can be difficult to obtain directly. However, little is known about the overlap between the microbial communities of the gut, faeces and swabs, which limits interpretability of results based on faecal samples and swabs. To address this gap in knowledge, we compared the microbiome from five sample types – proventriculus, small intestine, large intestine, cloacal swabs and faeces – across individual Zebra Finches Taeniopygia guttata housed in constant conditions with a standardized diet. We compared diversity and community composition through 16S rRNA gene sequencing. Our results show that microbial communities from both cloacal swabs and faeces were distinct from proventriculus and small intestinal samples, but generally indistinguishable from large intestinal samples, indicating that these non-lethal samples may be useful proxies for large intestinal bacterial communities. Gaining insight into non-invasive sampling techniques for passerines has implications for studies of gut microbial diversity and abundance in wild bird populations. Furthermore, reliable non-lethal sampling is necessary for experiments where repeated sampling is required.  相似文献   
298.
Ingested-derived DNA (iDNA) from insects represents a powerful tool for assessing vertebrate diversity because insects are easy to sample, have a diverse diet and are widely distributed. Because of these advantages, the use of iDNA for detecting mammals has gained increasing attention. Here we aimed to compare the effectiveness of mosquitoes and flies to detect mammals with a small sampling effort in a semi-controlled area, a zoo that houses native and non-native species. We compared mosquitoes and flies regarding the number of mammal species detected, the amount of mammal sequence reads recovered, and the flight distance range for detecting mammals. We also verified if the combination of two mini-barcodes (12SrRNA and 16SrRNA) would perform better than either mini-barcode alone to inform local mammal biodiversity from iDNA. To capture mosquitoes and flies, we distributed insect traps in eight sampling points during 5 days. We identified 43 Operational Taxonomic Units from 10 orders, from the iDNA of 17 mosquitoes and 46 flies. There was no difference in the number of species recovered per individual insect between mosquitoes and flies, but the number of flies captured was higher, resulting in more mammal species recovered by flies. Eight species were recorded exclusively by mosquitoes and 20 by flies, suggesting that using both samplers would allow a more comprehensive screening of the biodiversity. The maximum distance recorded was 337 m for flies and 289 m for mosquitoes, but the average range distance did not differ between insect groups. Our assay proved to be efficient for mammal detection, considering the high number of species detected with a reduced sampling effort.  相似文献   
299.
Most work on plant community ecology has been performed above ground, neglecting the processes that occur in the soil. DNA metabarcoding, in which multiple species are computationally identified in bulk samples, can help to overcome the logistical limitations involved in sampling plant communities belowground. However, a major limitation of this methodology is the quantification of species’ abundances based on the percentage of sequences assigned to each taxon. Using root tissues of five dominant species in a semi‐arid Mediterranean shrubland (Bupleurum fruticescens, Helianthemum cinereum, Linum suffruticosum, Stipa pennata and Thymus vulgaris), we built pairwise mixtures of relative abundance (20%, 50% and 80% biomass), and implemented two methods (linear model fits and correction indices) to improve estimates of root biomass. We validated both methods with multispecies mixtures that simulate field‐collected samples. For all species, we found a positive and highly significant relationship between the percentage of sequences and biomass in the mixtures (R2 = .44–.66), but the equations for each species (slope and intercept) differed among them, and two species were consistently over‐ and under‐estimated. The correction indices greatly improved the estimates of biomass percentage for all five species in the multispecies mixtures, and reduced the overall error from 17% to 6%. Our results show that, through the use of post‐sequencing quantification methods on mock communities, DNA metabarcoding can be effectively used to determine not only species’ presence but also their relative abundance in field samples of root mixtures. Importantly, knowledge of these aspects will allow us to study key, yet poorly understood, belowground processes.  相似文献   
300.
Environmental DNA (eDNA)-based methods of species detection are enabling various applications in ecology and conservation including large-scale biomonitoring efforts. qPCR is widely used as the standard approach for species-specific detection, often targeting a fish species of interest from aquatic eDNA. However, DNA metabarcoding has the potential to displace qPCR in certain eDNA applications. In this study, we compare the sensitivity of the latest Illumina NovaSeq 6000 NGS platform to qPCR TaqMan assays by measuring limits of detection and by analysing eDNA from water samples collected from Churchill River and Lake Melville, NL, Canada. Species-specific, targeted next generation sequencing (NGS) assays had significantly higher sensitivity than qPCR, with limits of detection 14- to 29-fold lower. For example, when analysing eDNA, qPCR detected Gadus ogac (Greenland cod) in 21% of samples, but targeted NGS detected this species in 29% of samples. General NGS assays were as sensitive as qPCR, while simultaneously detecting 15 fish species from eDNA samples. With over 34,000 fish species on the planet, parallel and sensitive methods such as NGS will be required to support effective biomonitoring at both regional and global scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号