首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2685篇
  免费   357篇
  国内免费   180篇
  3222篇
  2024年   20篇
  2023年   90篇
  2022年   40篇
  2021年   82篇
  2020年   151篇
  2019年   151篇
  2018年   128篇
  2017年   130篇
  2016年   138篇
  2015年   131篇
  2014年   133篇
  2013年   162篇
  2012年   90篇
  2011年   125篇
  2010年   82篇
  2009年   152篇
  2008年   175篇
  2007年   151篇
  2006年   120篇
  2005年   134篇
  2004年   120篇
  2003年   75篇
  2002年   93篇
  2001年   82篇
  2000年   59篇
  1999年   51篇
  1998年   75篇
  1997年   34篇
  1996年   42篇
  1995年   26篇
  1994年   23篇
  1993年   10篇
  1992年   24篇
  1991年   15篇
  1990年   18篇
  1989年   12篇
  1988年   6篇
  1987年   7篇
  1986年   6篇
  1985年   12篇
  1984年   5篇
  1983年   12篇
  1982年   3篇
  1981年   9篇
  1980年   5篇
  1978年   3篇
  1977年   2篇
  1976年   5篇
  1973年   1篇
  1958年   1篇
排序方式: 共有3222条查询结果,搜索用时 15 毫秒
61.
Ecological restoration is becoming mainstreamed worldwide but target ecosystems' responses to restorative interventions are not sufficiently monitored, in terms of the wide range of ecological, social, and economic attributes available. In order to highlight and better understand this problem, we conducted a literature review of the ecological, social, and economic attributes cited in the scientific literature used for monitoring the success of ecological restoration projects in Latin America and the Caribbean region, where no regional study of this kind has previously been conducted. In 84 of the 91 articles retained for the study, ecological indicators were evaluated, while only seven articles included measurements of socioeconomic indicators. Regarding the Society for Ecological Restoration Primer attributes of restored ecosystems, we only found indicators measuring attributes 1–6, with attribute 1 (species assemblages) predominating (73%), followed by physical conditions (54%) and ecological functions (51%). Brazil was the country in the region where most monitoring was being carried out (51% of the articles), and tropical rainforest (33%) and tropical dry forest (25%) were the ecosystem types where ecological restoration was most frequently monitored. Highly vulnerable ecosystems such as mangroves and paramos were underrepresented. Attributes related to ecosystem stability or to governance and education of communities were not monitored at all. More real long‐term monitoring, instead of chronosequences, is needed, especially where understanding socioeconomic implications of, and barriers to, effective ecological restoration is a top priority.  相似文献   
62.
Evidence that organisms evolve rapidly enough to alter ecological dynamics necessitates investigation of the reciprocal links between ecology and evolution. Data that link genotype to phenotype to ecology are needed to understand both the process and ecological consequences of rapid evolution. Here, we quantified the suite of elements in individuals (i.e., ionome) and differences in the fluxes of key nutrients across populations of threespine stickleback. We find that allelic variation associated with freshwater adaptation that controls bony plating is associated with changes in the ionome and nutrient recycling. More broadly, we find that adaptation of marine stickleback to freshwater conditions shifts the ionomes of natural populations and populations raised in common gardens. In both cases ionomic divergence between populations was primarily driven by differences in trace elements rather than elements typically associated with bone. These findings demonstrate the utility of ecological stoichiometry and the importance of ionome‐wide data in understanding eco‐evolutionary dynamics.  相似文献   
63.
An early investigation at the Biosphere-2 Laboratory, an artificial ecosystem in the Arizona desert, had shown that the flavonoid content of cacti grown in glass-filtered solar light was lower than of cacti grown in normal solar light. This was attributed to the absence of ultraviolet (UV) radiation, which is required for flavonoid biosynthesis. In this study, two species of Opuntia cacti were grown in solar and UV-depleted light, and their flavonol contents of different tissues were determined by HPLC. O. wilcoxii, previously raised in the absence of UV light, was exposed to normal solar light. The flavonol content of young O. wilcoxii pads was 28-fold higher when grown in solar light as compared to UV-depleted light. The flavonol contents of mature outer tissues were only slightly higher. O. violacea, previously raised in solar light, was also maintained in the same UV-depleted artificial ecosystem. The flavonol content after hydrolysis of outer tissues was similar, whether grown in solar light or UV-depleted light. We attribute these responses to different biosynthetic and metabolic rates of young vs. mature plant tissues; slow-growing mature tissues neither produce nor metabolize compounds as quickly as immature tissues. These findings indicate that artificial ecosystems can influence the production of natural products in cultivated plants.  相似文献   
64.
Ocean warming and acidification are general consequences of rising atmospheric CO2 concentrations. In addition to future predictions, highly productive systems such as the Humboldt Current System are characterized by important variations in both temperature and pCO2 level, but how these physical–chemical ocean changes might influence the transmission and survival of parasites has not been assessed. This study experimentally evaluated the effects of temperature (14, 18 and 25 °C) and the combined effects of temperature (∼15 and 20 °C) and pCO2 level (∼500 and 1400 microatmospheres (µatm) on the emergence and survival of two species of marine trematodes—Echinostomatidae gen. sp. and Philophthalmidae gen. sp.—both of which infect the intertidal snail Echinolittorina peruviana. Snails were collected from intertidal rocky pools in a year-round upwelling area of the northern Humboldt Current System (23°S). Two experiments assessed parasite emergence and survival by simulating emersion-immersion tidal cycles. To assess parasite survival, 2 h old cercariae (on average) were taken from a pool of infected snails incubated at 20–25 °C, and their mortality was recorded every 6 h until all the cercariae were dead. For both species, a trade-off between high emergence and low survival of cercariae was observed in the high temperature treatment. Species-specific responses to the combination of temperature and pCO2 levels were also observed: the emergence of Echinostomatidae cercariae was highest at 20 °C regardless of the pCO2 levels. By contrast, the emergence of Philophthalmidae cercariae was highest at elevated pCO2 (15 and 20 °C), suggesting that CO2 may react synergistically with temperature, increasing transmission success of this parasite in coastal ecosystems of the Humboldt Current System where water temperature and pH are expected to decrease. In conclusion, our results suggest that integrating temperature-pCO2 interactions in parasite studies is essential for understanding the consequence of climate change in future marine ecosystem health.  相似文献   
65.
On 20 December 2017, a mature Triaenodon obesus was observed at Hanga Roa Bay, Rapa Nui (Easter Island) at c.18 m depth. This observation increases both the range of T. obesus in the Pacific Ocean and the number of elasmobranch species at Rapa Nui. In combination with other recent sightings further extending the southern range of this species during the Austral summer, sea surface temperature is suggested as key to southern dispersal.  相似文献   
66.
The spatial extent of animal movement is a key consideration when designing conservation measures, such as marine protected areas. Methods to assess territory size in the marine environment, however, are labour intensive and/or expensive. Here, we explore a novel method to investigate the spatial ecology of territorial fishes by examining their reactions to an artificial light stimulus. During benthic towed video surveys conducted in Lyme Bay, southwest England, several species of wrasse (Labridae) have frequently been observed pursuing a laser projected onto the seabed. While the motivation behind ‘laser‐chasing’ is unclear, we quantified the spatial aspects of this behaviour by comparing chase distance and chase likelihood between and within species, to determine the potential utility of this method for investigating space use and aggression in wild fishes. Cuckoo wrasse (Labrus mixtus) were significantly more likely to display agonistic behaviour towards the laser than Goldsinny wrasse (Ctenolabrus rupestris). Goldsinny wrasse displayed a positive relationship between total length and chase‐distance, but not Cuckoo wrasse. The observed species differences may relate to behavioural factors affecting the motivation behind ‘laser‐chasing’, which is discussed. Chases by the cuckoo wrasse were significantly longer than those by Goldsinny wrasse, and these chase distances were used to estimate theoretical territory sizes for each species. To our knowledge, this is the first study to explore the spatial aspects of the reactions to an artificial stimulus by wild fishes. The potential to develop the method to directly investigate aspects of territoriality and aggression in wild fishes is discussed, including necessary further refinements and testing. Wild wrasses are increasingly exploited in Europe to provide cleaner fish for salmonid aquaculture, and we encourage the development of methods to inform spatial conservation measures for these ubiquitous and iconic species.  相似文献   
67.
Many biotic interactions influence community structure, yet most distribution models for plants have focused on plant competition or used only abiotic variables to predict plant abundance. Furthermore, biotic interactions are commonly context‐dependent across abiotic gradients. For example, plant–plant interactions can grade from competition to facilitation over temperature gradients. We used a hierarchical Bayesian framework to predict the abundances of 12 plant species across a mountain landscape and test hypotheses on the context‐dependency of biotic interactions over abiotic gradients. We combined field‐based estimates of six biotic interactions (foliar herbivory and pathogen damage, fungal root colonization, fossorial mammal disturbance, plant cover and plant diversity) with abiotic data on climate and soil depth, nutrients and moisture. All biotic interactions were significantly context‐dependent along temperature gradients. Results supported the stress gradient hypothesis: as abiotic stress increased, the strength or direction of the relationship between biotic variables and plant abundance generally switched from negative (suggesting suppressed plant abundance) to positive (suggesting facilitation/mutualism). For half of the species, plant cover was the best predictor of abundance, suggesting that the prior focus on plant–plant interactions is well‐justified. Explicitly incorporating the context‐dependency of biotic interactions generated novel hypotheses about drivers of plant abundance across abiotic gradients and may improve the accuracy of niche models.  相似文献   
68.
Riparian revegetation, such as planting woody seedlings or live stakes, is a nearly ubiquitous component of stream restoration projects in the United States. Though evaluations of restoration success usually focus on in‐stream ecosystems, in order to understand the full impacts of restoration the effects on riparian ecosystems themselves must be considered. We examined the effects of stream restoration revegetation measures on riparian ecosystems of headwater mountain streams in forested watersheds by comparing riparian vegetation structure and composition at reference, restored, and degraded sites on nine streams. According to mixed model analysis of variance (ANOVA), there was a significant effect of site treatment on riparian species richness, basal area, and canopy cover, but no effect on stem density. Vegetation characteristics at restored sites differed from those of reference sites according to all metrics (i.e. basal area, canopy cover, and species composition) except species richness and stem density. Restored and degraded sites were structurally similar, with some overlap in species composition. Restored sites were dominated by Salix sericea and Cornus amomum (species commonly planted for revegetation) and a suite of disturbance‐adapted species also dominant at degraded sites. Differences between reference and restored sites might be due to the young age of restored sites (average 4 years since restoration), to reassembly of degraded site species composition at restored sites, or to the creation of a novel anthropogenic ecosystem on these headwater streams. Additional research is needed to determine if this anthropogenic riparian community type persists as a resilient novel ecosystem and provides valued riparian functions.  相似文献   
69.
Functional ecosystems depend on biotic and abiotic connections among different environmental realms, including terrestrial, freshwater, and marine habitats. Accounting for such connections is increasingly recognized as critical for conservation of ecosystems, especially given growing understanding of the way in which anthropogenic landscape disturbances can degrade both freshwater and marine habitats. This need may be paramount in conservation planning for tropical island ecosystems, as habitats across realms are often in close proximity, and because endemic organisms utilize multiple habitats to complete life histories. In this study, we used Marxan analysis to develop conservation planning scenarios across the five largest islands of Hawaii, in one instance accounting for and in another excluding habitat connectivity between inland and coastal habitats. Native vegetation, perennial streams, and areas of biological significance along the coast were used as conservation targets in analysis. Cost, or the amount of effort required for conservation, was estimated using an index that integrated degree and intensity of anthropogenic landscape disturbances. Our results showed that when connectivity is accounted for among terrestrial, freshwater, and marine habitats, areas identified as having high conservation value are substantially different compared to results when connectivity across realms is not considered. We also showed that the trade-off of planning conservation across realms was minimal and that cross-realm planning had the unexpected benefit of selecting areas with less habitat degradation, suggesting less effort for conservation. Our cross-realm planning approach considers biophysical interactions and complexity within and across ecosystems, as well as anthropogenic factors that may influence habitats outside of their physical boundaries, and we recommend implementing similar approaches to achieve integrated conservation efforts.  相似文献   
70.
The diversity of arbuscular mycorrhizal fungi (sub-phylum Glomeromycotina) in two contrasting coastal ecosystems (dunes and restinga) at Peró Beach, Rio de Janeiro state, Brazil was evaluated at the end of the rainy (May) and dry (November) seasons, in 2014. A total of 22 species belonging to ten genera and five families were recorded. Glomus macrocarpum and Rhizoglomus microaggregatum had large biomass and frequencies of glomerospores at both sites. Glomerospore abundance was higher in the dry season in dunes and in the rainy season in restinga. Redundancy analysis revealed significant relationships between AMF-physical and chemical soil parameters. Shannon's index and Pielou's evenness indicated greater AMF diversity in dunes than restinga, despite the lower number of glomerospores in dunes. These results highlight the importance of knowing the AMF communities in different coastal ecosystems, especially in dunes, which due to the low vegetation cover are most frequently impacted by anthropic actions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号