首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16341篇
  免费   600篇
  国内免费   264篇
  17205篇
  2024年   87篇
  2023年   202篇
  2022年   332篇
  2021年   392篇
  2020年   367篇
  2019年   391篇
  2018年   415篇
  2017年   286篇
  2016年   297篇
  2015年   415篇
  2014年   591篇
  2013年   830篇
  2012年   406篇
  2011年   512篇
  2010年   484篇
  2009年   588篇
  2008年   629篇
  2007年   652篇
  2006年   624篇
  2005年   553篇
  2004年   505篇
  2003年   468篇
  2002年   437篇
  2001年   350篇
  2000年   317篇
  1999年   299篇
  1998年   297篇
  1997年   270篇
  1996年   230篇
  1995年   322篇
  1994年   279篇
  1993年   296篇
  1992年   283篇
  1991年   256篇
  1990年   247篇
  1989年   261篇
  1988年   272篇
  1987年   254篇
  1986年   202篇
  1985年   266篇
  1984年   390篇
  1983年   268篇
  1982年   343篇
  1981年   270篇
  1980年   223篇
  1979年   208篇
  1978年   83篇
  1977年   62篇
  1976年   62篇
  1973年   35篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
Differential translation and fragile X syndrome   总被引:3,自引:0,他引:3  
  相似文献   
22.
Jin C  Ding P  Wang Y  Ma D 《FEBS letters》2005,579(28):6375-6382
It is known that chemokine-like factor superfamily 8 (CKLFSF8), a member of the CKLF superfamily, has four putative transmembrane regions and a MARVEL domain. Its structure is similar to TM4SF11 (plasmolipin) and widely distributed in normal tissue. However, its function is not yet known. We show here that CKLFSF8 is associated with the epidermal growth factor receptor (EGFR) and that ectopic expression of CKLFSF8 in several cell lines suppresses EGF-induced cell proliferation, whereas knockdown of CKLFSF8 by siRNA promotes cell proliferation. In cells overexpressing CKLFSF8, the initial activation of EGFR was not affected, but subsequent desensitization of EGF-induced signaling occurred rapidly. This attenuation was correlated with an increased rate of receptor endocytosis. In contrast, knockdown of CKLFSF8 by siCKLFSF8 delayed EGFR endocytosis. These results identify CKLFSF8 as a novel regulator of EGF-induced signaling and indicate that the association of EGFR with four transmembrane proteins is critical for EGFR desensitization.  相似文献   
23.
Summary We have analyzed the ability of the physical substratum to modulate both the ultrastructural and protein synthetic characteristics of the Madin-Darby canine kidney (MDCK) renal cell line. When MDCK cells were seeded on Millipore Millicell CM microporous membrane cell culture inserts they demonstrated a more columnar organization with an increase in cell density sixfold greater than the same cells seeded on conventional plastic substrata. After 1 wk postseeding on the microporous membrane a partial basal lamina was noted, with a contiguous basement membrane being apparent after 2 wk. One-dimensional sodium dodecyl sulfate gel electrophoresis was used to analyze detergent-solubilized proteins from MDCK cells maintained on plastic substrata vs. microporous membranes. When proteins were pulse-labeled with [35S]methionine, a 55 kDa protein was evident in the cytosolic extract of cells grown on collagen, laminin, and nontreated plastic substrata; but this labeled protein was not evident in similar extracts from cells grown on collagen and laminin-coated microporous membranes. To test if the polarized, basement-membrane secreting phenotype of the MDCK cells could be generated on a microporous membrane without pretreatment with any extracellular matrix (ECM) components, cells were seeded on the Millipore Millicell HA (cellulosic) microporous membrane. This type of substrata does not need a coating of ECM components for cell attachment. A partial basement membrane was formed below cells where the basal surface of the cell was planar, but not in areas where the cell formed large cytoplasmic extensions into the filter. This led us to the conclusion that the microporous nature of the substrata can dictate both ultrastructural and protein synthetic activities of MDCK cells. Furthermore, we suggest that both the planar nature of the basal surface and the microporosity of the substrate are corequisites for the deposition of the basement membrane.  相似文献   
24.
TNF-α (TNF), a pro-inflammatory cytokine is synthesized as a 26 kDa protein, anchors in the plasma membrane as transmembrane TNF (TmTNF), and is subjected to proteolysis by the TNF-α converting enzyme (TACE) to release the 15 kDa form of soluble TNF (sTNF). TmTNF and sTNF interact with 2 distinct receptors, TNF-R1 (p55) and TNF-R2 (p75), to mediate the multiple biologic effects of TNF described to date. Several anti-TNF biologics that bind to both forms of TNF and block their interactions with the TNF receptors are now approved for the treatment of a variety of immune-mediated diseases. Several reports suggest that binding of anti-TNFs to TmTNF delivers an outside-to-inside ‘reverse’ signal that may also contribute to the efficacy of anti-TNFs. Some patients, however, develop anti-TNF drug antibody responses (ADA or immunogenicity). Here, we demonstrate biochemically that TmTNF is transiently expressed on the surface of lipopolysaccharide-stimulated primary human monocytes, macrophages, and monocyte-derived dendritic cells (DCs) and expression of TmTNF on the cell surface is enhanced following treatment of cells with TAPI-2, a TACE inhibitor. Importantly, binding of anti-TNFs to TmTNF on DCs results in rapid internalization of the anti-TNF/TmTNF complex first into early endosomes and then lysosomes. The internalized anti-TNF is processed and anti-TNF peptides can be eluted from the surface of DCs. Finally, tetanus toxin peptides fused to anti-TNFs are presented by DCs to initiate T cell recall proliferation response. Collectively, these observations may provide new insights into understanding the biology of TmTNF, mode of action of anti-TNFs, biology of ADA response to anti-TNFs, and may help with the design of the next generation of anti-TNFs.  相似文献   
25.
Implantation of blastocysts involves conversion of maternal and embryonic cell surfaces from a nonadhesive to an adhesive state in response to the internally driven developmental program or to externally generated factors. However, the intricacies of the cellular and subcellular changes that promote the attachment are not known, because these changes are difficult to determine in situ because of the nonaccessibility of the site. To overcome this, an in vitro model of implantation was developed by co-culturing rat blastocysts and uterine epithelial cells of the same gestational age (day 5 postcoitum; plug day as day 1) in drops hanging from the lid of a Petri dish. The system was used to study the changes on the surface membranes of the cells of the trophectoderm and uterine epithelium and to evaluate the antiadhesive activity of the newly designed test substances. The isolated epithelial cell vesicles were co-cultured with zona-free blastocysts in the microdrops (40–50 µl) hanging from the lid of a 60-mm Petri dish. The lid was placed over the lower dish, which was presaturated with the medium. The culture was examined 48 h later to determine the site of adhesion of epithelial cell vesicles with the trophoblasts lining the blastocyst. The cell-cell adhesion was monitored on a computerized image analyzer. To validate the adhesion of blastocysts and epithelial cell vesicles in co-culture, the expression of a cell adhesion molecule, uvomorulin, was studied using immunocytochemical technique after incubating with antiuvomorulin antibody. Intense staining was noted on the membrane surfaces at the site of attachment of the blastocyst and cell vesicles.The authors express their sincere thanks to the Ministry of Health and Family Welfare, Government of India, for their financial support  相似文献   
26.
H+-ATP synthase is the dominant ATP production site in mitochondria and chloroplasts. So far, dimerization of ATP synthase has been observed only in mitochondria by biochemical and electron microscopic investigations. Although the physiological relevance remains still enigmatic, dimerization was proposed to be a unique feature of the mitochondrion [Biochim. Biophys. Acta 1555 (2002) 154]. It is hard to imagine, however, that closely related protein complexes of mitochondria and chloroplast should show such severe differences in structural organization. We present the first evidences for dimerization of chloroplast ATP synthases within the thylakoid membrane.By investigation of the thylakoid membrane of Chlamydomonas reinhardtii by blue-native polyacrylamide gel electrophoresis, dimerization of the chloroplast ATP synthase was detected. Chloroplast ATP synthase dimer dissociates into monomers upon incubation with vanadate or phosphate but not by incubation with molybdate, while the mitochondrial dimer is not affected by the incubation. This suggests a distinct dimerization mechanism for mitochondrial and chloroplast ATP synthase. Since vanadate and phosphate bind to the active sites, contact sites located on the hydrophilic CF1 part are suggested for the chloroplast ATP synthase dimer. As the degree of dimerization varies with phosphate concentration, dimerization might be a response to low phosphate concentrations.  相似文献   
27.
The stability and shapes of domains with different bending rigidities in lipid membranes are investigated. These domains can be formed from the inclusion of an impurity in a lipid membrane or from the phase separation within the membrane. We show that, for weak line tensions, surface tensions and finite spontaneous curvatures, an equilibrium phase of protruding circular domains or striped domains may be obtained. We also predict a possible phase transition between the investigated morphologies.  相似文献   
28.
Saposins and Their Interaction with Lipids   总被引:2,自引:0,他引:2  
The lysosomal degradation of several sphingolipids requires the presence of four small glycoproteins called saposins, generated by proteolytic processing of a common precursor, prosaposin. Saposins share several structural properties, including six similarly located cysteines forming three disulfide bridges with the same cysteine pairings. Recently it has been noted that also other proteins have the same polypeptide motif characterized by the similar location of six cysteines. These saposin-like (SAPLIP) proteins are surfactant protein B (SP-B), Entamoeba histolytica poreforming peptide, NK-lysin, acid sphingomyelinase and acyloxyacyl hydrolase. The structural homology and the conserved disulfide bridges suggest for all SAPLIPs a common fold, called saposin fold. Up to now a precise fold, comprising five -helices, has been established only for NK-lysin. Despite their similar structure each saposin promotes the degradation of specific sphingolipids in lysosomes, e.g. Sap B that of sulfatides and Sap C that of glucosylceramides. The different activities of the saposins must reside within the module of the -helices and/or in additional specific regions of the molecule. It has been reported that saposins bind to lysosomal hydrolases and to several sphingolipids. Their structural and functional properties have been extensively reviewed and hypotheses regarding their molecular mechanisms of action have been proposed. Recent work of our group has evidenced a novel property of saposins: some of them undergo an acid-induced change in hydrophobicity that triggers their binding to phospholipid membranes. In this article we shortly review recent findings on the structure of saposins and on their interactions with lipids, with special attention to interactions with phospholipids. These findings offer a new approach for understanding the physiological role of saposins in lysosomes.  相似文献   
29.
Pollen samples of 6 varieties of Zea mays L. were used to isolate the viable sperm cells. After being probed with N-hydroxysuccinimido-biotin (NHS-biotin), the sperm cell plasma membrane proteins were compared with each other using the method of Western blotting. Results showed that there was no significant difference among varieties. The molecular weights of probed plasma membrane proteins were concentrated on 91,60,43,30 and 17 kD. Immunochemical method was adopted for further purification of sperm plasma membrane protein preparation which was some- what contaminated with cell organelles. After the cell organelles were isolated from etiolated seedlings of Zea mays by sucrose density gradient super centrifugation, the crude membrane proteins of organelles, endoplasm reticulum, mitochondria, Golgi body and plasmolemma were respectively used as antigen to immunize Guinea pig. The antibody was obtained from respective antiserum, then further used to produce immuno-affinity absorbent. After the solution of membrane proteins of sperm cells passed through the column, some proteins probed whth NHS-biotin were identified. Two major proteins probed with NHS-biotin were considered to be sperm cell specific. The size of these proteins in SDS-PAGE was about 65 kD, 22 kD, respectively.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号