首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1620篇
  免费   194篇
  国内免费   41篇
  2024年   4篇
  2023年   57篇
  2022年   45篇
  2021年   71篇
  2020年   104篇
  2019年   161篇
  2018年   97篇
  2017年   58篇
  2016年   68篇
  2015年   92篇
  2014年   123篇
  2013年   165篇
  2012年   84篇
  2011年   83篇
  2010年   70篇
  2009年   55篇
  2008年   69篇
  2007年   48篇
  2006年   49篇
  2005年   29篇
  2004年   45篇
  2003年   19篇
  2002年   35篇
  2001年   26篇
  2000年   17篇
  1999年   18篇
  1998年   17篇
  1997年   11篇
  1996年   16篇
  1995年   11篇
  1994年   18篇
  1993年   16篇
  1992年   11篇
  1991年   9篇
  1990年   5篇
  1989年   9篇
  1988年   5篇
  1987年   9篇
  1986年   2篇
  1985年   6篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1976年   1篇
排序方式: 共有1855条查询结果,搜索用时 46 毫秒
991.
Esophageal squamous cell carcinoma (ESCC) is the eighth most prevalent cancer and the sixth leading cause for cancer-associated mortality. MicroRNAs (miRNAs) are increasingly reported to exert important regulatory functions in human cancers by regulating certain gene expression. miR-488-3p has been identified to be a tumor suppressor in multiple cancers, but its role in ESCC is yet to be investigated. The present study aimed to uncover the biological role and modulatory mechanism of miR-488-3p in ESCC. We first revealed the downregulation of miR-488-3p in ESCC tissues and cell lines. Gain-of-function assays confirmed that miR-488-3p overexpression abrogated proliferation and accelerated apoptosis. Mechanistically, we identified via bioinformatics tool and confirmed that zinc finger and BTB domain containing 2 (ZBTB2) was a target for miR-488-3p. Moreover, miR-488-3p activated the p53 pathway through suppressing ZBTB2. Finally, rescue assays proved that ZBTB2 was involved in the regulation of miR-488-3p on proliferation and apoptosis in ESCC. Additionally, we verified that miR-488-3p had alternate targets in ESCC by confirming the involvement of protein kinase, DNA-activated, catalytic subunit (PRKDC), a known target for miR-488-3p, in miR-488-3p-mediated regulation on ESCC. In sum, this study revealed that miR-488-3p inhibited proliferation and induced apoptosis by targeting ZBTB2 and activating p53 pathway in esophageal squamous cell carcinoma, providing a novel biological target for ESCC.  相似文献   
992.
Uveal melanoma (UM) is the most common intraocular tumor worldwide. We proposed to identify a vital gene signature that has prognostic value for UM metastasis. For this purpose, we obtained a published DNA methylation and gene expression data set associated with UM from the Gene Expression Omnibus. The genes whose aberrant expression significantly associated with UM patients’ metastasis-free survival (MFS) were identified by applying a univariate Cox proportional hazards model to the gene expression data set followed by a robust likelihood-based survival analysis to screen the optimal prognostic gene signatures (PGS). A formula for calculating the risk score that represents UM metastasis risk was constructed by including the PGSs’ expression values weighted by their regression coefficients, which were obtained by a multivariate Cox regression analysis. As a result, aberrant expression of 2884 genes were found to be significantly associated with UM patients’ MFS, which were referred to as MFSGs, and 11 out of those MFSGs, GJC1, TCEA1, MFSD3, FAF2, TLCD1, GPAA1, CYC1, ASAP1, JPH1, LDB3, and KDELR3, were identified as PGSs through which we could accurately separate UM samples with shorter MFS from those with longer MFS. By combining the DNA methylation data set and MFSGs, we further identified 265 MFSGs, which contained CpG sites that significantly hyper- or hypo-methylated in UM samples compared with control samples. Functional enrichment analysis and pathway crosstalk analysis of those genes indicated significant enrichment of cancer-related pathways. In conclusion, we identified an 11-gene-based prognostic signature and several gene biomarkers for UM metastasis, which should be helpful for selecting an appropriate treatment method for specific patients with UM.  相似文献   
993.
Long noncoding RNA (lncRNA) FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) has been shown to be dysregulated in several types of human cancer. However, the role of FOXD2-AS1 in cutaneous melanoma was still unclear. In our study, FOXD2-AS1 expression has been found to be upregulated in cutaneous melanoma tissue specimens and cell lines compared with that in normal tissue specimens and normal human epidermal melanocyte, respectively. Furthermore, high expression of FOXD2-AS1 was obviously correlated with deep Breslow thickness, present ulceration, high Clark level and distant metastasis in cutaneous melanoma patients. However, there were no statistical associations between FOXD2-AS1 expression and cutaneous melanoma patients’ disease-free survival and overall survival. The results of loss-of-function study showed that inhibition of FOXD2-AS1 suppresses cutaneous melanoma cell proliferation, migration and invasion through regulating phospho-Akt expression. In conclusion, FOXD2-AS1 is associated with clinical progression in cutaneous melanoma patients, and functions as oncogenic lncRNA in cutaneous melanoma cells.  相似文献   
994.
PKM2 plays an important role in cancer glycolysis, however, the link of PKM2 and microRNAs (miRNAs) in melanoma is still unclear. The study will investigate the role of miRNAs in regulating PKM2 mediated melanoma cell glycolysis. We found that high PKM2 expression in melanoma tissues and cell lines was positively associated with glycolysis. Further study indicated that miR-625-5p regulated PKM2 expression on mRNA and protein levels in melanoma cells. There was a negative relationship between miR-625-5p and PKM2 expression in the clinical melanoma samples. These findings provide an evidence that miR-625-5p/PKM2 plays a role in melanoma cell glucose metabolism.  相似文献   
995.
996.
Migration stimulating factor (MSF) is a potent autocrine and paracrine factor expressed by fibroblasts and epithelial cells in foetal skin, tumours and healing wounds. In tissue culture, MSF bioactivity is present in the conditioned medium of foetal and tumour derived fibroblasts, but not in normal adult fibroblasts or keratinocytes. The conditioned medium of early passage keratinocytes or a keratinocyte line (HaCaT) effectively inhibited the motogenic activity of rhMSF. Fractionation of keratinocyte conditioned medium by size-exclusion chromatography revealed the presence of bioactive MSF as well as a functional inhibitor of MSF (MSFI) in fractions corresponding to approximately 70 kDa and 25 kDa, respectively. MSFI was purified and identified as neutrophil gelatinase-associated lipocalin (NGAL or lipocalin-2). Immunostaining confirmed that keratinocytes expressed both MSF and NGAL, whereas normal adult fibroblasts did not express either. Recombinant and cell-produced NGAL neutralised the motogenic activity of rhMSF. NGAL is known to bind MMP-9 and promote the activity of this protease. In contrast, there was no evidence of NGAL-MSF binding in keratinocyte conditioned medium. MSF displays a number of bioactivities of relevance to cancer progression and wound healing. Our findings indicate a novel function of NGAL and a possible mechanism for regulating MSF activity in tissues.  相似文献   
997.
The eukaryotic translation initiation factor 5A (eIF5A) undergoes a specific post-translational modification called hypusination. This modification is required for the functionality of this protein. The compound N1-guanyl-1,7-diaminoheptane (GC7) is a potent and selective inhibitor of deoxyhypusine synthase, which catalyses the first step of eIF5A hypusination process. In the present study, the effects of GC7 on cell death were investigated using two cell lines: melan-a murine melanocytes and Tm5 murine melanoma. In vitro treatment with GC7 increased by 3-fold the number of cells presenting DNA fragmentation in Tm5 cells. Exposure to GC7 also decreased viability to both cell lines. This study also describes, for the first time, the in vivo antitumour effect of GC7, as indicated by impaired melanoma growth in C57BL/6 mice.  相似文献   
998.
Dengue, a vector-borne disease, thrives in tropical and subtropical regions worldwide. A retrospective analysis of the 2002 dengue epidemic in Colima located on the Mexican central Pacific coast is carried out. We estimate the reproduction number from spatial epidemic data at the level of municipalities using two different methods: (1) Using a standard dengue epidemic model and assuming pure exponential initial epidemic growth and (2) Fitting a more realistic epidemic model to the initial phase of the dengue epidemic curve. Using Method I, we estimate an overall mean reproduction number of 3.09 (95% CI: 2.34,3.84) as well as local reproduction numbers whose values range from 1.24 (1.15,1.33) to 4.22 (2.90,5.54). Using Method II, the overall mean reproduction number is estimated to be 2.0 (1.75,2.23) and local reproduction numbers ranging from 0.49 (0.0,1.0) to 3.30 (1.63,4.97). Method I systematically overestimates the reproduction number relative to the refined Method II, and hence it would overestimate the intensity of interventions required for containment. Moreover, optimal intervention with defined resources demands different levels of locally tailored mitigation. Local epidemic peaks occur between the 24th and 35th week of the year, and correlate positively with the final local epidemic sizes (rho=0.92, P-value<0.001). Moreover, final local epidemic sizes are found to be linearly related to the local population size (P-value<0.001). This observation supports a roughly constant number of female mosquitoes per person across urban and rural regions.  相似文献   
999.
Nickel oxide nanoparticles (NiO‐NPs) are progressively used for an immense number of new applications in modern industries sectors. Nevertheless, the toxic impact of NiO‐NPs has not been clearly elucidated on human melanoma cell lines at the cellular and molecular level. Hence, this study was designed to examine the in vitro cytotoxicity potentials of NiO‐NPs on malignant cutaneous melanoma (MCM) mitochondria. Results revealed that NiO‐NPs significantly increased reactive oxygen species level, lipid peroxidation, and mitochondrial membrane potential and decreased succinate dehydrogenase activity, glutathione level, and ATP content on skin mitochondria isolated from the mouse model of melanoma compared with the non‐cancerous mouse skin mitochondria. Our results revealed that NiO‐NPs induced lysosomal membrane labialization on mentioned mitochondria. The current study showed that NiO‐NPs could significantly induce selective cytotoxicity on MCM mitochondria. Therefore, this compound may be considered as a promising candidate for further in vivo and clinical studies to reach a new anti‐MCM drug.  相似文献   
1000.
MicroRNAs (miRNAs) participate in the development and progression of melanoma. However, while dysregulation of microRNA‐378 (miR‐378) has been seen in various cancer types, its clinical importance and function in melanoma are poorly elucidated. In this work, miR‐378 expression in melanoma and in adjacent non‐cancerous tissue was evaluated with a quantitative real‐time polymerase chain reaction. A series of assays (wound healing, Transwell, and nude mouse subcutaneous tumor model) were used to investigate the implications of abnormal miR‐378 regulation on melanoma cell migration and invasion in vitro, and on tumorigenicity in vivo. Prediction and conformation of the miR‐378 target gene was undertaken using bioinformatic analysis and luciferase reporter system. Expression of miR‐378 was often increased in melanoma, and shown to potentiate its migration, invasion, and tumorigenicity. miR‐378 acted, at least partially, through inhibition of the potential target FOXN3 and via Wnt/β‐catenin pathway activation. The findings indicate that miR‐378 triggers melanoma development and progression. This miRNA could be a novel diagnostic and prognostic biological marker and provide utility for targeted treatment of melanoma.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号