首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1622篇
  免费   194篇
  国内免费   41篇
  2024年   4篇
  2023年   57篇
  2022年   47篇
  2021年   71篇
  2020年   104篇
  2019年   161篇
  2018年   97篇
  2017年   58篇
  2016年   68篇
  2015年   92篇
  2014年   123篇
  2013年   165篇
  2012年   84篇
  2011年   83篇
  2010年   70篇
  2009年   55篇
  2008年   69篇
  2007年   48篇
  2006年   49篇
  2005年   29篇
  2004年   45篇
  2003年   19篇
  2002年   35篇
  2001年   26篇
  2000年   17篇
  1999年   18篇
  1998年   17篇
  1997年   11篇
  1996年   16篇
  1995年   11篇
  1994年   18篇
  1993年   16篇
  1992年   11篇
  1991年   9篇
  1990年   5篇
  1989年   9篇
  1988年   5篇
  1987年   9篇
  1986年   2篇
  1985年   6篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1976年   1篇
排序方式: 共有1857条查询结果,搜索用时 15 毫秒
81.
Melanomas have high levels of genomic instability that can contribute to poor disease prognosis. Here, we report a novel defect of the ATM‐dependent cell cycle checkpoint in melanoma cell lines that promotes genomic instability. In defective cells, ATM signalling to CHK2 is intact, but the cells are unable to maintain the cell cycle arrest due to elevated PLK1 driving recovery from the arrest. Reducing PLK1 activity recovered the ATM‐dependent checkpoint arrest, and over‐expressing PLK1 was sufficient to overcome the checkpoint arrest and increase genomic instability. Loss of the ATM‐dependent checkpoint did not affect sensitivity to ionizing radiation demonstrating that this defect is distinct from ATM loss of function mutations. The checkpoint defective melanoma cell lines over‐express PLK1, and a significant proportion of melanomas have high levels of PLK1 over‐expression suggesting this defect is a common feature of melanomas. The inability of ATM to impose a cell cycle arrest in response to DNA damage increases genomic instability. This work also suggests that the ATM‐dependent checkpoint arrest is likely to be defective in a higher proportion of cancers than previously expected.  相似文献   
82.
Somatic mutation analysis of melanoma has been performed at the single gene level extensively over the past several decades. This has provided considerable insight into the critical pathways controlling melanoma initiation and progression. During the last 5 yr, next‐generation sequencing (NGS) has enabled even more comprehensive mutational screening at the level of multigene panels, exomes and genomes. These studies have uncovered many new and unexpected players in melanoma development. The recent landmark study from The Cancer Genome Atlas (TCGA) consortium describing the genomic architecture of 333 cutaneous melanomas provides the largest and broadest analysis to date on the somatic aberrations underlying melanoma genesis. It thus seems timely to review the mutational landscape of melanoma and highlight the key genes and cellular pathways that appear to drive this cancer.  相似文献   
83.
Metastatic melanoma is an aggressive cancer with a poor prognostic, and the design of new targeted drugs to treat melanoma is a therapeutic challenge. A promising approach is to produce monoclonal antibodies (mAbs) against the endothelin B receptor (ETB), which is known to be overexpressed in melanoma and to contribute to proliferation, migration and vasculogenic mimicry associated with invasiveness of this cancer.

We previously described rendomab-B1, a mAb produced by DNA immunization. It is endowed with remarkable characteristics in term of affinity, specificity and antagonist properties against human ETB expressed by the endothelial cells, but, surprisingly, had poor affinity for ETB expressed by melanoma cells. This characteristic strongly suggested the existence of a tumor-specific ETB form. In the study reported here, we identified a new mAb, rendomab-B4, which, in contrast to rendomab-B1, binds ETB expressed on UACC-257, WM-266-4 and SLM8 melanoma cells. Moreover, after binding to UACC-257 cells, rendomab-B4 is internalized and colocalizes with the endosomal protein EEA-1. Interestingly, rendomab-B4, despite its inability to compete with endothelin binding, is able to inhibit phospholipase C pathway and migration induced by endothelin. By contrast, rendomab-B4 fails to decrease ERK1/2 phosphorylation induced by endothelin, suggesting a biased effect on ETB.

These particular properties make rendomab-B4 an interesting tool to analyze ETB-structure/function and a promising starting point for the development of new immunological tools in the field of melanoma therapeutics.  相似文献   

84.
Brain metastases are common and devastating complications of both breast cancer and melanoma. Although mammary carcinoma brain metastases are more frequent than those originating from melanoma, this latter has the highest tropism to the brain. Using static and dynamic in vitro approaches, here we show that melanoma cells have increased adhesion to the brain endothelium in comparison to breast cancer cells. Moreover, melanoma cells can transmigrate more rapidly and in a higher number through brain endothelial monolayers than breast cancer cells. In addition, melanoma cells have increased ability to impair tight junctions of cerebral endothelial cells. We also show that inhibition of Rac or PI3K impedes adhesion of breast cancer cells and melanoma cells to the brain endothelium. In addition, inhibition of Rac or PI3K inhibits the late phase of transmigration of breast cancer cells and the early phase of transmigration of melanoma cells. On the other hand, the Rac inhibitor EHT1864 impairs the junctional integrity of the brain endothelium, while the PI3K inhibitor LY294002 has no damaging effect on interendothelial junctions. We suggest that targeting the PI3K/Akt pathway may represent a novel opportunity in preventing the formation of brain metastases of melanoma and breast cancer.  相似文献   
85.
Low extracellular pH promotes in melanoma cells a malignant phenotype characterized by an epithelial-to-mesenchymal transition (EMT) program, endowed with mesenchymal markers, high invasiveness and pro-metastatic property. Here, we demonstrate that melanoma cells exposed to an acidic extracellular microenvironment, 6.7±0.1, shift to an oxidative phosphorylation (Oxphos) metabolism. Metformin, a biguanide commonly used for type 2 diabetes, inhibited the most relevant features of acid-induced phenotype, including EMT and Oxphos. When we tested effects of lactic acidosis, to verify whether sodium lactate might have additional effects on acidic melanoma cells, we found that EMT and Oxphos also characterized lactic acid-treated cells. An increased level of motility was the only gained property of lactic acidic-exposed melanoma cells. Metformin treatment inhibited both EMT markers and Oxphos and, when its concentration raised to 10 mM, it induced a striking inhibition of proliferation and colony formation of acidic melanoma cells, both grown in protons enriched medium or lactic acidosis. Thus, our study provides the first evidence that metformin may target either proton or lactic acidosis-exposed melanoma cells inhibiting EMT and Oxphox metabolism. These findings disclose a new potential rationale of metformin addition to advanced melanoma therapy, e.g. targeting acidic cell subpopulation.  相似文献   
86.
Microtubules are considered as important targets of anticancer therapy. EAPB0503 and its structural imidazo[1,2-a]quinoxaline derivatives are major microtubule-interfering agents with potent anticancer activity. In this study, the synthesis of several new derivatives of EAPB0503 is described, and the anticancer efficacy of 13 novel derivatives on A375 human melanoma cell line is reported. All new compounds show significant antiproliferative activity with IC50 in the range of 0.077–122 μM against human melanoma cell line (A375). Direct inhibition of tubulin polymerization assay in vitro is also assessed. Results show that compounds 6b, 6e, 6g, and EAPB0503 highly inhibit tubulin polymerization with percentages of inhibition of 99%, 98%, 90%, and 84% respectively. Structure–activity relationship studies within the series are also discussed in line with molecular docking studies into the colchicine-binding site of tubulin.  相似文献   
87.
88.
89.
90.
Uveal melanoma (UM) has a high mortality rate due to liver metastasis. The insulin‐like growth factor‐1 receptor (IGF‐1R) is highly expressed in UM and has been shown to be associated with hepatic metastases. Targeting IGF signalling may be considered as a promising approach to inhibit the process of metastatic UM cells. Pristimerin (PRI) has been demonstrated to inhibit the growth of several cancer cells, but its role and underlying mechanisms in the IGF‐1‐induced UM cell proliferation are largely unknown. The present study examined the anti‐proliferative effect of PRI on UM cells and its possible role in IGF‐1R signalling transduction. MTT and clonogenic assays were used to determine the role of PRI in the proliferation of UM cells. Flow cytometry was performed to detect the effect of PRI on the cell cycle distribution of UM cells. Western blotting was carried out to assess the effects of PRI and IGF‐1 on the IGF‐1R phosphorylation and its downstream targets. The results indicated that IGF‐1 promoted the UM cell proliferation and improved the level of IGF‐1R phosphorylation, whereas PRI attenuated the effect of IGF‐1. Interestingly, PRI could not only induce the G1 phase accumulation and reduce the G2 phase induced by IGF‐1, but also could stimulate the expression of p21 and inhibit the expression of cyclin D1. Besides, PRI could attenuate the phosphorylations of Akt, mTOR and ERK1/2 induced by IGF‐1. Furthermore, the molecular docking study also demonstrated that PRI had potential inhibitory effects on IGF‐1R. Taken together, these results indicated that PRI could inhibit the proliferation of UM cells through down‐regulation of phosphorylated IGF‐1R and its downstream signalling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号