首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   33篇
  国内免费   12篇
  2024年   2篇
  2023年   4篇
  2022年   10篇
  2021年   18篇
  2020年   14篇
  2019年   13篇
  2018年   9篇
  2017年   6篇
  2016年   3篇
  2015年   16篇
  2014年   18篇
  2013年   13篇
  2012年   14篇
  2011年   23篇
  2010年   25篇
  2009年   21篇
  2008年   19篇
  2007年   17篇
  2006年   14篇
  2005年   23篇
  2004年   11篇
  2003年   18篇
  2002年   15篇
  2001年   10篇
  2000年   8篇
  1999年   10篇
  1998年   11篇
  1997年   8篇
  1996年   7篇
  1995年   4篇
  1994年   5篇
  1993年   4篇
  1992年   11篇
  1991年   12篇
  1990年   7篇
  1989年   11篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   7篇
  1983年   5篇
  1982年   6篇
  1981年   1篇
  1979年   1篇
  1978年   3篇
  1975年   2篇
  1973年   3篇
排序方式: 共有480条查询结果,搜索用时 15 毫秒
71.
SWEET (Sweet Will Eventually be Exported Transporter) proteins have been recently discovered and form one of the three major families of sugar transporters. Homologs of SWEET are found in both prokaryotes and eukaryotes. Bacterial SWEET homologs have three transmembrane segments forming a triple-helical bundle and the functional form is dimers. Eukaryotic SWEETs have seven transmembrane helical segments forming two triple-helical bundles with a linker helix. Members of SWEET homologs have been shown to be involved in several important physiological processes in plants. However, not much is known regarding the biological significance of SWEET homologs in prokaryotes and in mammals. We have collected more than 2000 SWEET homologs from both prokaryotes and eukaryotes. For each homolog, we have modeled three different conformational states representing outward open, inward open and occluded states. We have provided details regarding substrate-interacting residues and residues forming the selectivity filter for each SWEET homolog. Several search and analysis options are available. The users can generate a phylogenetic tree and structure-based sequence alignment for selected set of sequences. With no metazoan SWEETs functionally characterized, the features observed in the selectivity filter residues can be used to predict the potential substrates that are likely to be transported across the metazoan SWEETs. We believe that this database will help the researchers to design mutational experiments and simulation studies that will aid to advance our understanding of the physiological role of SWEET homologs. This database is freely available to the scientific community at http://bioinfo.iitk.ac.in/bioinfo/dbSWEET/Home.  相似文献   
72.
Images of chlorophyll fluorescence emitted at wavelengths above and below 700 nm were recorded from leaf sections of C4 species using confocal laser scanning microscopy (LSM). We investigated species exhibiting both NAD-malic enzyme (NAD-ME) C4 photosynthesis and NADP-malic enzyme (NADP-ME) C4 photosynthesis. Comparing LSM fluorescence of leaf sections with flow-cytometrically determined fluorescence from individual chloroplasts revealed that LSM fluorescence was distorted by the optical properties of leaf sections. Leaf section fluorescence, when corrected by transmission data derived from light transmission images, agreed with flow cytometry data. The corrected LSM fluorescence yielded information on the distribution of the individual photosystems in the C4 leaf sections: PSII concentrations in bundle sheath cells were elevated in NAD-ME species but diminished in most of the NADP-ME species investigated. The NADP-ME species, Arundinella hirta, however, showed normal PSII and increased PSI concentration in bundle sheath chloroplasts. Finally, a gradient of PSI was observed within the bundle sheath cells from Euphorbia maculata.  相似文献   
73.
The surface of Manduca sexta low density lipophorin (LDLp) particles was employed as a template to examine the relative lipid binding affinity of the 22 kDa receptor binding domain (residues 1–183) of human apolipoprotein E3 (apo E3). Isolated LDLp was incubated with exogenous apolipoprotein and, following re-isolation by density gradient ultracentrifugation, particle apolipoprotein content was determined. Incubation of recombinant human apo E3(1–183) with LDLp resulted in a saturable displacement of apolipophorin III (apo Lp-III) from the particle surface, creating a hybrid apo E3(1–183)-LDLp. Although subsequent incubation with excess exogenous apo Lp-III failed to reverse the process, human apolipoprotein A-I (apo A-I) effectively displaced apo E3(1–183) from the particle surface. We conclude that human apo E N-terminal domain possesses a higher intrinsic lipid binding affinity than apo Lp-III but has a lower affinity than human apo A-I. The apo E3(1–183)-LDLp hybrid was competent to bind to the low density lipoprotein receptor on cultured fibroblasts. The system described is useful for characterizing the relative lipid binding affinities of wild type and mutant exchangeable apolipoproteins and evaluation of their biological properties when associated with the surface of a spherical lipoprotein.  相似文献   
74.
An analogue of the human granulocyte–macrophage colony‐stimulating factor (hGM‐CSF), hGM‐CSF(13–27)–Gly–(75–87) was synthesized by solid phase methodology. This analogue was designed to comprise helices A and C of the native growth factor, linked by a glycine bridge. Helices A and C form half of a four‐helix bundle motif in the crystal structure of the native factor and are involved in the interaction with α‐ and β‐chains of the heterodimeric receptor. A conformational analysis of the synthetic analogue by CD, two‐dimensional nmr spectroscopy, and molecular dynamics calculations is reported. The analogue is in a random structure in water and assumes a partially α‐helical conformation in a 1 : 1 trifluoroethanol/water mixture. The helix content in this medium is ∼ 70%. By 2D‐nmr spectroscopy, two helical segments were identified in the sequences corresponding to helices A and C. In addition to medium‐ and short‐range NOESY connectivities, a long‐range cross peak was found between the Cβ proton of Val16 and NH proton of His87 (using the numbering of the native protein). Experimentally derived interproton distances were used as restraints in molecular dynamics calculations, utilizing the x‐ray coordinates as the initial structure. The final structure is characterized by two helical segments in close spatial proximity, connected by a loop region. This structure is similar to that of the corresponding domain in the x‐ray structure of the native growth factor in which helices A and C are oriented in an antiparallel fashion. The N‐terminal residues Gly–Pro of helix C are involved in an irregular turn connecting the two helical segments. As a consequence, helix C is appreciably shifted and slightly rotated with respect to helix A compared to the x‐ray structure of the native growth factor. These small differences in the topology of the two helices could explain the lower biological activity of this analogue with respect to that of the native growth factor. © 1999 John Wiley & Sons, Inc. Biopoly 50: 545–554, 1999  相似文献   
75.
Metabolism in plants is compartmentalized among different tissues, cells and subcellular organelles. Mass spectrometry imaging (MSI) with matrix‐assisted laser desorption ionization (MALDI) has recently advanced to allow for the visualization of metabolites at single‐cell resolution. Here we applied 5‐ and 10 μm high spatial resolution MALDI‐MSI to the asymmetric Kranz anatomy of Zea mays (maize) leaves to study the differential localization of two major anionic lipids in thylakoid membranes, sulfoquinovosyldiacylglycerols (SQDG) and phosphatidylglycerols (PG). The quantification and localization of SQDG and PG molecular species, among mesophyll (M) and bundle sheath (BS) cells, are compared across the leaf developmental gradient from four maize genotypes (the inbreds B73 and Mo17, and the reciprocal hybrids B73 × Mo17 and Mo17 × B73). SQDG species are uniformly distributed in both photosynthetic cell types, regardless of leaf development or genotype; however, PG shows photosynthetic cell‐specific differential localization depending on the genotype and the fatty acyl chain constituent. Overall, 16:1‐containing PGs primarily contribute to the thylakoid membranes of M cells, whereas BS chloroplasts are mostly composed of 16:0‐containing PGs. Furthermore, PG 32:0 shows genotype‐specific differences in cellular distribution, with preferential localization in BS cells for B73, but more uniform distribution between BS and M cells in Mo17. Maternal inheritance is exhibited within the hybrids, such that the localization of PG 32:0 in B73 × Mo17 is similar to the distribution in the B73 parental inbred, whereas that of Mo17 × B73 resembles the Mo17 parent. This study demonstrates the power of MALDI‐MSI to reveal unprecedented insights on metabolic outcomes in multicellular organisms at single‐cell resolution.  相似文献   
76.
The objective of our study was to mimic in a typical reductionist approach the molecular interactions observed at the interface between the gp130 receptor and interleukin-6 during formation of their complex. A peptide system obtained by reproducing some of the interleukin-6/gp130 molecular interactions into a two-helix bundle structure was investigated. The solution conformational features of this system were determined by CD and NMR techniques. The CD titration experiments demonstrated that the interaction between the designed peptides is specific and based on a well-defined stoichiometry. The NMR data confirmed some of the structural features of the binding mechanism as predicted by the rational design and indicated that under our conditions the recognition specificity and affinity can be explained by the formation of a two-helix bundle. Thus, the data reported herein represent a promising indication on how to develop new peptides able to interfere with formation of the interleukin-6/gp130 complex.  相似文献   
77.
Insulin expression in the thymus has been implicated in regulating the negative selection of autoreactive T cells and in mediating the central immune tolerance towards pancreatic β‐cells. To further explore the function of this ectopic insulin expression, we knocked out the mouse Ins2 gene specifically in the Aire‐expressing medullary thymic epithelial cells (mTECs), without affecting its expression in the β‐cells. When further crossed to the Ins1 knockout background, both male and female pups (designated as ID‐TEC mice for insulin‐deleted mTEC) developed diabetes spontaneously around 3 weeks after birth. β‐cell‐specific autoimmune destruction was observed, as well as islet‐specific T cell infiltration. The presence of insulin‐specific effector T cells was shown using ELISPOT assays and adoptive T cell transfer experiments. Results from thymus transplantation experiments proved further that depletion of Ins2 expression in mTECs was sufficient to break central tolerance and induce anti‐insulin autoimmunity. Our observations may explain the rare cases of type 1 diabetes onset in very young children carrying diabetes‐resistant HLA class II alleles. ID‐TEC mice could serve as a new model for studying this pathology.  相似文献   
78.
Photoinhibition is caused by an imbalance between the rates of the damage and repair cycle of photosystem II D1 protein in thylakoid membranes. The PSII repair processes include (i) disassembly of damaged PSII-LHCII supercomplexes and PSII core dimers into monomers, (ii) migration of the PSII monomers to the stroma regions of thylakoid membranes, (iii) dephosphorylation of the CP43, D1 and D2 subunits, (iv) degradation of damaged D1 protein, and (v) co-translational insertion of the newly synthesized D1 polypeptide and reassembly of functional PSII complex. Here, we studied the D1 turnover cycle in maize mesophyll and bundle sheath chloroplasts using a protein synthesis inhibitor, lincomycin. In both types of maize chloroplasts, PSII was found as the PSII-LHCII supercomplex, dimer and monomer. The PSII core and the LHCII proteins were phosphorylated in both types of chloroplasts in a light-dependent manner. The rate constants for photoinhibition measured for lincomycin-treated leaves were comparable to those reported for C3 plants, suggesting that the kinetics of the PSII photodamage is similar in C3 and C4 species. During the photoinhibitory treatment the D1 protein was dephosphorylated in both types of chloroplasts but it was rapidly degraded only in the bundle sheath chloroplasts. In mesophyll chloroplasts, PSII monomers accumulated and little degradation of D1 protein was observed. We postulate that the low content of the Deg1 enzyme observed in mesophyll chloroplasts isolated from moderate light grown maize may retard the D1 repair processes in this type of plastids.  相似文献   
79.
80.
With-no-lysine (K) kinase 4 (WNK4) is a protein serine/threonine kinase associated with a Mendelian form of hypertension. WNK4 is an integrative regulator of renal transport of Na+, K+, and Cl as shown in Xenopus oocyte system. In addition, WNK4 enhances the surface expression of epithelial Ca2+ channel TRPV5, which plays a key role in the fine tuning of renal Ca2+ reabsorption. Variations in the magnitude of WNK4-mediated regulation on TRPV5 in Xenopus oocytes suggest additional cellular components with limited expression are required for the regulation. In this study, we identified the Na+/H+ exchanger regulating factor 2 (NHERF2) as a critical component for the positive regulation of TRPV5 by WNK4. NHERF2 augmented the positive effect of WNK4 on TRPV5, whereas its homolog NHERF1 had no effect when tested in the Xenopus oocyte system. The C-terminal PDZ binding motif of TRPV5 was required for the regulation by NHERF2. While NHERF2 interacted with TRPV5, no association between NHERF2 and WNK4 was detected using a GST pull-down assay. WNK4 increased the forward trafficking of TRPV5; however, it also caused an accelerated decline of the functional TRPV5 channels at later stage of co-expression. NHERF2 stabilized TRPV5 at the plasma membrane without interrupting the forward trafficking of TRPV5, thus prevented the decline of functional TRPV5 channel caused by WNK4 at later stage. The complementary and orderly regulations of WNK4 and NHERF2 allow TRPV5 functions at higher level for a longer period to maximize Ca2+ influx.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号