首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   7篇
  国内免费   5篇
  82篇
  2023年   3篇
  2022年   7篇
  2021年   2篇
  2020年   8篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   17篇
  2012年   11篇
  2011年   4篇
  2010年   2篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1993年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
61.
《Current biology : CB》2020,30(14):2716-2728.e6
  1. Download : Download high-res image (162KB)
  2. Download : Download full-size image
  相似文献   
62.
We have developed a new technique to study the oligomeric state of proteins in solution. OCAM or Oligomer Characterization by Addition of Mass counts protein subunits by selectively shaving a protein mass tag added to a protein subunit via a short peptide linker. Cleavage of each mass tag reduces the total mass of the protein complex by a fixed amount. By performing limited proteolysis and separating the reaction products by size on a blue native PAGE gel, a ladder of reaction products corresponding to the number of subunits can be resolved. The pattern of bands may be used to distinguish the presence of a single homo-oligomer from a mixture of oligomeric states. We have applied OCAM to study the mechanosensitive channel of large conductance (MscL) and find that these proteins can exist in multiple oligomeric states ranging from tetramers up to possible hexamers. Our results demonstrate the existence of oligomeric forms of MscL not yet observed by X-ray crystallography or other techniques and that in some cases a single type of MscL subunit can assemble as a mixture of oligomeric states.  相似文献   
63.
2010年科学家在小鼠神经瘤母细胞中筛选鉴定出Piezo1和Piezo2蛋白.Piezo2是一个由机械刺激直接激活且可将机械刺激转换为电信号进而形成机械敏感性电流通道的蛋白质.Piezo2自发现以来一直受到广泛的关注,在触觉、本体感觉、痛觉、肿瘤癌症等多种生理病理过程中发挥重要作用.本文在前期研究的基础上阐述了机械敏感...  相似文献   
64.
The transition from a developmentally arrested mature oocyte to a developing embryo requires a series of highly conserved events, collectively known as egg activation. All of these events are preceded by a ubiquitous rise of intracellular calcium, which results from influx of external calcium and/or calcium release from internal storage. In Drosophila, this calcium rise initiates from the pole(s) of the oocyte by influx of external calcium in response to mechanical triggers. It is thought to trigger calcium responsive kinases and/or phosphatases, which in turn alter the oocyte phospho‐proteome to initiate downstream events. Recent studies revealed that external calcium enters the activating Drosophila oocyte through Trpm channels, a feature conserved in mouse. The local entry of calcium raises the question of whether Trpm channels are found locally at the poles of the oocyte or are localized around the oocyte periphery, but activated only at the poles. Here, we show that Trpm is distributed all around the oocyte. This requires that it thus be specially regulated at the poles to allow calcium wave initiation. We show that neither egg shape nor local pressure is sufficient to explain this local activation of Trpm channels.  相似文献   
65.
Synechocystis sp strain PCC 6803 contains one gene encoding a putative large conductance mechanosensitive channel homolog [named SyMscL (slr0875)]. However, it is unclear whether SyMscL contributes to the adaptation to hypoosmotic stress in Synechocystis. Here we report the in vivo characteristics of SyMscL. SyMscL was mainly expressed in the plasma membrane of Synechocystis. Cell volume monitoring using stopped-flow spectrophotometry showed that ΔsymscL cells swelled more rapidly than wild-type cells under hypoosmotic stress conditions. Expression of symscL was under circadian control, and its peak corresponded to the beginning of subjective night. These results indicate that SyMscL functioned as one component of the osmotic homeostatic regulatory system of the cell coordinating the response of Synechocystis to daily metabolic osmotic fluctuations and environmental changes.  相似文献   
66.
PLAC8 motif-containing proteins form a large family and members can be found in fungi, algae, higher plants and animals. They include the PCR proteins of plants. The name giving PLAC8 domain was originally found in a protein residing in the spongiotrophoblast layer of the placenta of mammals. A further motif found in a large number of these proteins including several PCR proteins is the CCXXXXCPC or CLXXXXCPC motif. Despite their wide distribution our knowledge about the function of these proteins is very limited. For most of them two membrane-spanning α-helices are predicted, indicating that they are membrane associated or membrane intrinsic proteins. In plants PLAC8 motif-containing proteins have been described to be implicated in two very different functions. On one hand, it has been shown that they are involved in the determination of fruit size and cell number. On the other hand, two members of this family, AtPCR1 and AtPCR2 play an important role in transport of heavy metals such as cadmium or zinc. Transport experiments and approaches to model the 3_D structure of these proteins indicate that they could act as transporters for these divalent cations by forming homomultimers. In this minireview we discuss the present knowledge about this protein family and try to give an outlook on how to integrate the different proposed functions into a common picture about the role of PLAC8 motif-containing proteins.  相似文献   
67.
We recorded the activity of single mechanosensitive (MS) ion channels from membrane patches on single muscle fibers isolated from mice. We investigated the actions of various TRP (transient receptor potential) channel blockers on MS channel activity. 2-aminoethoxydiphenyl borate (2-APB) neither inhibited nor facilitated single channel activity at submillimolar concentrations. The absence of an effect of 2-APB indicates MS channels are not composed purely of TRPC or TRPV1, 2 or 3 proteins. Exposing patches to 1-oleolyl-2-acetyl-sn-glycerol (OAG), a potent activator of TRPC channels, also had no effect on MS channel activity. In addition, flufenamic acid and spermidine had no effect on the activity of single MS channels. By contrast, SKF-96365 and ruthenium red blocked single-channel currents at micromolar concentrations. SKF-96365 produced a rapid block of the open channel current. The blocking rate depended linearly on blocker concentration, while the unblocking rate was independent of concentration, consistent with a simple model of open channel block. A fit to the concentration-dependence of block gave kon = 13 x 106 M−1s−1 and koff = 1609 sec−1 with KD = ~124 µM. Block by ruthenium red was complex, involving both reduction of the amplitude of the single-channel current and increased occupancy of subconductance levels. The reduction in current amplitude with increasing concentration of ruthenium red gave a KD = ~49 µM. The high sensitivity of MS channels to block by ruthenium red suggests MS channels in skeletal muscle contain TRPV subunits. Recordings from skeletal muscle isolated from TRPV4 knockout mice failed to show MS channel activity, consistent with a contribution of TRPV4. In addition, exposure to hypo-osmotic solutions increases opening of MS channels in muscle. Our results provide evidence TRPV4 contributes to MS channels in skeletal muscle.  相似文献   
68.
Moran N 《FEBS letters》2007,581(12):2337-2347
"Osmotic Motors"--the best-documented explanation for plant leaf movements--frequently reside in specialized motor leaf organs, pulvini. The movements result from dissimilar volume and turgor changes in two oppositely positioned parts of the pulvinus. This Osmotic Motor is powered by a plasma membrane proton ATPase, which drives KCl fluxes and, consequently, water, across the pulvinus into swelling cells and out of shrinking cells. Light signals and signals from the endogenous biological clock converge on the channels through which these fluxes occur. These channels and their regulatory pathways in the pulvinus are the topic of this review.  相似文献   
69.
机械敏感离子通道(mechanosensitive channels,MSCs)是一类分布于各种细胞膜上可将细胞受到的机械刺激转化为电信号或化学信号的特殊膜蛋白。由于机械敏感通道所具有的特性,使其成为超声调控的重要潜在靶点。超声由于具有良好的空间分辨率和聚焦效果,并且理论上可实现无创条件下的全脑范围定位,具有用于进行物理性神经调制和治疗神经系统疾病的潜力。近年来,越来越多的离子通道被鉴定出具有机械敏感特性,但其中有明确报道可以被超声激活的依然数量较少。此外,现阶段超声激励下机械敏感通道的开放过程和机制仍未被阐明。本文着重介绍了大电导机械敏感通道、瞬时受体电位通道、退化蛋白/上皮钠通道、双孔钾通道和Piezo通道等机械敏感离子通道在超声神经调制中的研究进展及其应用,为未来超声神经调制的深入研究和临床应用提供参考。  相似文献   
70.
In order to reduce the toxicity and increase the efficacy of drugs, there is a need for smart drug delivery systems. Liposomes are one of the promising tools for this purpose. An ideal liposomal delivery system should be stable, long-circulating, accumulate at the target site and release its drug in a controlled manner. Even though there have been many developments to this end, the dilemma of having a stable liposome during circulation but converting it into a leaky structure at the target site is still a major challenge. So far, most attempts have focused on destabilizing the liposome in response to a specific stimulus at a target site, but with limited success. Our approach is to keep the stable liposome but build in a remote-controlled valve as a new release mechanism, instead. The valve is a pore-forming bacterial membrane protein. It has been engineered such that, after being reconstituted into the liposomes, its opening and closing can be controlled on command by the ambient pH, light or a combination of both. In addition, a much higher degree of flexibility for fine-tuning of the liposome's response to its environment is achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号