首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1586篇
  免费   149篇
  国内免费   48篇
  1783篇
  2024年   12篇
  2023年   30篇
  2022年   40篇
  2021年   69篇
  2020年   69篇
  2019年   86篇
  2018年   73篇
  2017年   66篇
  2016年   55篇
  2015年   61篇
  2014年   93篇
  2013年   176篇
  2012年   53篇
  2011年   57篇
  2010年   50篇
  2009年   83篇
  2008年   77篇
  2007年   54篇
  2006年   57篇
  2005年   39篇
  2004年   46篇
  2003年   46篇
  2002年   42篇
  2001年   25篇
  2000年   20篇
  1999年   37篇
  1998年   26篇
  1997年   33篇
  1996年   23篇
  1995年   16篇
  1994年   13篇
  1993年   12篇
  1992年   15篇
  1991年   24篇
  1990年   17篇
  1989年   10篇
  1988年   8篇
  1987年   4篇
  1986年   8篇
  1985年   12篇
  1984年   11篇
  1983年   2篇
  1982年   8篇
  1981年   8篇
  1980年   5篇
  1979年   4篇
  1978年   2篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1783条查询结果,搜索用时 0 毫秒
91.
Stem cells are a promising cell source for regenerative medicine due to their characteristics of self‐renewal and differentiation. The intricate balance between these two cell fates is maintained by precisely controlled symmetric and asymmetric cell divisions. Asymmetric division has a fundamental importance in maintaining tissue homeostasis and in the development of multi‐cellular organisms. For example, during development, asymmetric cell divisions are responsible for the formation of the body axis. Mechanistically, mitotic spindle dynamics determine the assembly and separation of chromosomes and regulate the orientation of cell division. Interestingly, symmetric and asymmetric cell division is not mutually exclusive and a range of factors are involved in such cell‐fate decisions, the measurement of which can provide efficient and reliable information on the regenerative potential of a cell. The balance between self‐renewal and differentiation in stem cells is controlled by various biophysical and biochemical cues. Although the role of biochemical factors in asymmetric stem cell division has been widely studied, the effect of biophysical cues in stem‐cell self‐renewal is not comprehensively understood. Herein, we review the biological relevance of stem‐cell asymmetric division to regenerative medicine and discuss the influences of various intrinsic and extrinsic biophysical cues in stem‐cell self‐renewal. This review particularly aims to inform the clinical translation of efforts to control the self‐renewal ability of stem cells through the tuning of various biophysical cues.  相似文献   
92.
Protoporphyrin IX‐triplet state lifetime technique (PpIX‐TSLT) is a method used to measure oxygen (PO2) in human cells. The aim of this study was to assess the technical feasibility and safety of measuring oxygen‐dependent delayed fluorescence of 5‐aminolevulinic acid (ALA)‐induced PpIX during upper gastrointestinal (GI) endoscopy. Endoscopic delayed fluorescence measurements were performed 4 hours after oral administration of ALA in healthy volunteers. The ALA dose administered was 0, 1, 5 or 20 mg/kg. Measurements were performed at three mucosal spots in the gastric antrum, duodenal bulb and descending duodenum with the catheter above the mucosa and while applying pressure to induce local ischemia and monitor mitochondrial respiration. During two endoscopies, measurements were performed both before and after intravenous administration of butylscopolamine. Delayed fluorescence measurements were successfully performed during all 10 upper GI endoscopies. ALA dose of 5 mg/kg showed adequate signal‐to‐noise ratio (SNR) values >20 without side effects. All pressure measurements showed significant prolongation of delayed fluorescence lifetime compared to measurements performed without pressure (P < .001). Measurements before and after administration of butylscopolamine did not differ significantly in the duodenal bulb and descending duodenum. Measurements of oxygen‐dependent delayed fluorescence of ALA‐induced PpIX in the GI tract during upper GI endoscopy are technically feasible and safe.  相似文献   
93.
94.
Plant polyploid complexes provide useful model systems for distinguishing between adaptive and nonadaptive causes of parapatric distributions in closely related lineages. Polyploidy often gives rise to morphological and physiological changes, which may be adaptive to different environments, but separate distributions may also be maintained by reproductive interference caused by postzygotic reproductive isolation. Here, we test the hypothesis that diploid and descendent polyploid races of the wind-pollinated herb Mercurialis annua , which are found in parapatry over an environmental gradient in northeast Spain, are differentiated in their ecophysiology and life history. We also ask whether any such differences represent adaptations to their different natural environments. On the basis of a series of reciprocal transplant experiments in the field, and experiments under controlled conditions, we found that diploid and polyploid populations of M. annua are ecologically differentiated, but that they do not show local adaptation; rather, the diploids have higher fitness than the polyploids across both diploid- and polyploid-occupied regions. In fact, diploids are currently displacing polyploids by advancing south on two separate fronts in Spain, and previous work has shown that this displacement is being driven to a large extent by asymmetrical pollen swamping. Our results here suggest that ecophysiological superiority of the diploids may also be contributing to their expansion.  相似文献   
95.
An Overview of the Biology of Reaction Wood Formation   总被引:1,自引:0,他引:1  
Reaction wood possesses altered properties and performs the function of regulating a tree's form, but it is a serious defect in wood utility. Trees usually develop reaction wood in response to a gravistimulus. Reaction wood in gymnosperms is referred to as compression wood and develops on the lower side of leaning stems or branches. In arboreal, dicotyledonous angiosperms, however, it is called tension wood and is formed on the upper side of the leaning. Exploring the biology of reaction wood formation is of great value for the understanding of the wood differentiation mechanisms, cambial activity, gravitropism, and the systematics and evolution of plants. After giving an outline of the variety of wood and properties of reaction wood, this review lays emphasis on various stimuli for reaction wood induction and the extensive studies carried out so far on the roles of plant hormones in reaction wood formation. Inconsistent results have been reported for the effects of plant hormones. Both auxin and ethylene regulate the formation of compression wood in gymnosperms. However, the role of ethylene may be indirect as exogenous ethylene cannot induce compression wood formation. Tension wood formation is mainly regulated by auxin and gibberellin. Interactions among hormones and other substances may play important parts in the regulation of reaction wood formation.  相似文献   
96.
Two new guaiane-type sesquiterpene lactones, compounds 1 and 2, along with three known guaianolide- or pseudoguaianolides, were isolated from Centipeda minima (whole plant). Their structures were identified by spectroscopic and mass-spectrometric analyses. The configuration at C5 of the guaiane framework of 1 was rationalized by quantum-mechanical calculations (Table 2). All compounds were found to be active against eight different microbial pathogens (Table 3), with MIC values in the range of 6.25-100 microg/ml.  相似文献   
97.
Bacteria are often found in close association with surfaces, resulting in the formation of biofilms. In Staphylococcus aureus (S. aureus), biofilms are implicated in the resilience of chronic infections, presenting a serious clinical problem world-wide. Here, S. aureus biofilms are grown under flow within clinical catheters at 37 °C. The lipid composition and biophysical properties of lipid extracts from these biofilms are compared with those from exponential growth and stationary phase cells. Biofilms show a reduction in iso and anteiso branching compensated by an increase in saturated fatty acids compared to stationary phase. A drastic reduction in carotenoid levels is also observed during biofilm formation. Thermotropic measurements of Laurdan GP and DPH polarization, show a reduction of lipid packing at 37 °C for biofilms compared to stationary phase. We studied the effects of carotenoid content on DMPG and DPPG model membranes showing trends in thermotropic behavior consistent with those observed in bacterial isolates, indicating that carotenoids participate in modulating lipid packing. Additionally, bending elastic constant (kc) measurements using vesicle fluctuation analysis (VFA) show that the presence of carotenoids can increase membrane bending rigidity. The antimicrobial peptide Magainin H2 was less activity on liposomes composed of stationary phase compared to biofilms or exponential growth isolates. This study contributes to an understanding of how Staphylococcus aureus modulates the composition of its membrane lipids, and how those changes affect the biophysical properties of membranes, which in turn may play a role in its virulence and its resistance to different membrane-active antimicrobial agents.  相似文献   
98.
In this study proteins extracted from prepupae of Hermetia illucens, also known as black soldier fly, are investigated as promising base for a new type of bioplastics for agricultural purposes. Design of experiments techniques are employed to perform a rational study on the effects of different combination of glycerol as plasticizer, citric acid as cross-linking agent and distilled water as solvent on the capability of proteins to form a free-standing film through casting technique, keeping as fixed the quantity of proteins. Glycerol shows interesting properties as plasticizer contributing to the formation of homogenous and free-standing film. Moreover, mechanical and thermal characterizations are performed to estimate the effect of increasing amounts of proteins on the final properties and thickness of the specimens. Proteins derived from H. illucens can be successfully employed as base for bioplastics to be employed for agricultural purposes.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号