首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1087篇
  免费   114篇
  国内免费   37篇
  2024年   5篇
  2023年   26篇
  2022年   26篇
  2021年   51篇
  2020年   53篇
  2019年   69篇
  2018年   65篇
  2017年   51篇
  2016年   37篇
  2015年   45篇
  2014年   70篇
  2013年   136篇
  2012年   43篇
  2011年   44篇
  2010年   31篇
  2009年   52篇
  2008年   46篇
  2007年   35篇
  2006年   37篇
  2005年   28篇
  2004年   27篇
  2003年   33篇
  2002年   29篇
  2001年   20篇
  2000年   14篇
  1999年   25篇
  1998年   16篇
  1997年   18篇
  1996年   13篇
  1995年   7篇
  1994年   6篇
  1993年   6篇
  1992年   8篇
  1991年   13篇
  1990年   12篇
  1989年   6篇
  1988年   5篇
  1987年   1篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1982年   3篇
  1981年   5篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
排序方式: 共有1238条查询结果,搜索用时 15 毫秒
101.
The formation of cartilage from stem cells during development is a complex process which is regulated by both local growth factors and biomechanical cues, and results in the differentiation of chondrocytes into a range of subtypes in specific regions of the tissue. In fetal development cartilage also acts as a precursor scaffold for many bones, and mineralization of this cartilaginous bone precursor occurs through the process of endochondral ossification. In the endochondral formation of bones during fetal development the interplay between cell signalling, growth factors, and biomechanics regulates the formation of load bearing bone, in addition to the joint capsule containing articular cartilage and synovium, generating complex, functional joints from a single precursor anlagen. These joint tissues are subsequently prone to degeneration in adult life and have poor regenerative capabilities, and so understanding how they are created during development may provide useful insights into therapies for diseases, such as osteoarthritis, and restoring bone and cartilage lost in adulthood. Of particular interest is how these tissues regenerate in the mechanically dynamic environment of a living joint, and so experiments performed using 3D models of cartilage development and endochondral ossification are proving insightful. In this review, we discuss some of the interesting models of cartilage development, such as the chick femur which can be observed in ovo, or isolated at a specific developmental stage and cultured organotypically in vitro. Biomaterial and hydrogel‐based strategies which have emerged from regenerative medicine are also covered, allowing researchers to make informed choices on the characteristics of the materials used for both original research and clinical translation. In all of these models, we illustrate the essential importance of mechanical forces and mechanotransduction as a regulator of cell behavior and ultimate structural function in cartilage. Birth Defects Research (Part C) 105:19–33, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
102.
In the present research, merwinite (M) scaffolds with and without nano‐titanium dioxide (titania) were synthesized by water‐based freeze casting method. Two different amounts (7.5 and 10 wt%) of n‐TiO2 were added to M scaffolds. They were sintered at temperature of 1573.15°K and at cooling rate of 4°K/min. The changes in physical and mechanical properties were investigated. The results showed that although M and M containing 7.5 wt% n‐TiO2 (MT7.5) scaffolds had approximately the same microstructures in terms of pore size and wall thickness, these factors were different for sample MT10. In overall, the porosity, volume and linear shrinkage were decreased by adding different weight ratios of n‐TiO2 into the M structure. According to the obtained mechanical results, the optimum mechanical performance was related to the sample MT7.5 (E = 51 MPa and σ = 2 MPa) with respect to the other samples, i.e.: M (E = 47 MPa and σ = 1.8 MPa) and MT10 (E = 32 MPa and σ = 1.4 MPa). The acellular in vitro bioactivity experiment confirmed apatite formation on the surfaces of all samples for various periods of soaking time. Based on cell study, the sample which possessed favorable mechanical behavior (MT7.5) supported attachment and proliferation of osteoblastic cells. These results revealed that the MT7.5 scaffold with improved mechanical and biological properties could have a potential to be used in bone substitute. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:550–556, 2015  相似文献   
103.
Oligopeptides are well‐known to self‐assemble into a wide array of nanostructures including β‐sheet‐rich fibers that when present above a critical concentration become entangled and form self‐supporting hydrogels. The length, quantity, and interactions between fibers influence the mechanical properties of the hydrogel formed and this is typically achieved by varying the peptide concentration, pH, ionic strength, or the addition of a second species or chemical cross‐linking agent. Here, we outline an alternative, facile route to control the mechanical properties of the self‐assembling octa‐peptide, FEFEFKFK (FEKII); simply doping with controlled quantities of its double length peptide, FEFEFKFK‐GG‐FKFKFEFE (FEKII18). The structure and properties of a series of samples were studied here (0–100 M% of FEKII18) using Fourier transform infrared, small angle X‐ray scattering, transmission electron microscopy, and oscillatory rheology. All samples were found to contain elongated, flexible fibers and all mixed samples contained Y‐shaped branch points and parallel fibers which is attributed to the longer peptide self‐assembling within two fibers, thus creating a cross‐link in the network structure. Such behavior was reflected in an increase in the elasticity of the mixed samples with increasing quantity of double peptide. Interestingly the elastic modulus increased up to 30 times the pure FEKII value simply by adding 28 M% of FEKII18. These observations provide an easy, off‐the‐shelf method for an end‐user to control the cross‐linked network structure of the peptide hydrogel, and consequently strength of the hydrogel simply by physically mixing pre‐determined quantities of two similar peptide molecules. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 669–680, 2014.  相似文献   
104.
Macro-/Micro-structures and mechanical properties of the elytra of beetles were studied. The Scan Electron Microscope (SEM) and optical microscopy were employed to observe the macro-/micro-structure of the surface texture and cross-section structure of elytra. Nano-indentation was carried out to measure the elastic modulus and the hardness of elytra. Tensile strengths of elytra in lateral and longitudinal directions were measured by a muhifunctional testing machine. The coupling force between elytra was also measured and the clocking mechanism was studied. SEM images show the similar geometric structure in transverse and longitudinal sections and multilayer-dense epicuticle and exocuticle, followed by bridge piers with a helix structured fibers, which connect the exocuticle to the endodermis, and form an ellipse empty to reduce the structure weight. The elastic modulus and the hardness are topologically distributed and the mechanical parameters of fresh elytra are much higher than those of dried elytra. The tensile strength of the fresh biological material is twice that of dried samples, but there is no clear difference between the data in lateral and longitudinal directions. Coupling forces measured are 6.5 to 160 times of beetles' bodyweight, which makes the scutellum very important in controlling the open and close of the elytra. The results provide a biological template to inspire lightweight structure design for aerospace engineering.  相似文献   
105.
细胞微环境是一个多因素组成的、时空可变的复杂集合,对细胞的行为和功能发挥起着决定性作用。但传统的细胞生物学研究方法很难在体外为细胞提供这样一个复杂的、微尺度的生长环境,致使许多体外研究结果与在体情况相差甚远。近年来,微流控技术与细胞培养技术的结合为细胞微环境的模拟和控制提供了可能。文章通过提炼微环境的重要参数及其特征,介绍微流控技术是如何满足这些参数的需求,探讨了微流控技术在体外模拟细胞微环境的可行性,并总结了近年来该技术在微环境体外模拟研究中取得的成果,对微流控技术在细胞微环境构建中的发展方向和应用前景进行了展望。  相似文献   
106.
Abstract: The regulation of the Ext 1.4 gene encoding a tobacco ( Nicotiana tabacum L.) extensin was studied in response to mechanical constraints. Transgenic plants carrying chimeric Ext 1.4 promoter/GUS (β-glucuronidase)/ nos terminator or Ext 1.4 3'-end constructs were obtained. Expression of gene fusions was found in tissues where mechanical stresses occur, e.g., during germination, as well as in root and stem tissues. Chimeric genes were successively and transiently expressed in different tissues during germination, i.e., at the tip of the root and then in the hypocotyl, during their growth through the seed coat. Moreover, they were expressed in cortical cells surrounding the emergence of adventitious and lateral roots and developmentally-regulated in nodes. The expression of Ext 1.4 could be induced by imposing mechanical constraints due to curving of either the stems or roots. Expression then occurred in cells where it does not normally occur, i.e., in cortical cells of internodes and in the distal piliferous zone of roots. Accumulation of RNAs occurs several days after the start of the constraint. Promoter regions involved in regulation of expression of Ext 1.4 in stems, roots, and in seedlings upon mechanical constraint could be localized. Moreover, the 3' non-coding region was shown to modulate expression in roots. These results suggest that the regulation of Ext 1.4 following mechanical stress is dependent on both tissue-specific and mechanical-responsive elements.  相似文献   
107.
The use of fluorescent whitening agents (FWAs) instead of oxidative bleaching agents such as peroxide is an alternative for the bleaching of mechanical pulp. By this approach, the chromophores of the wood components in the pulp are not destroyed chemically but the brightness of the pulp is achieved by increased re-emission of blue light in the range of 400–500 nm. In this study, a typical FWA and peroxide bleaching chemicals are compared with respect to both production and application in the pulp mill. The life-cycle inventory shows that, on the one hand, the production of the FWA leads to higher releases of salts and adsorbable organically bound halogens (AOX) to surface waters and that, on the other hand, significantly less FWA is required in the application step in order to reach the same pulp brightness. The life-cycle impact assessment of the production step is presented in terms of Eco-indicator 95. These results, however, do not cover the environmental fate of various chemicals released to the aquatic environment in the course of the bleaching/whitening step. Therefore, this part is assessed by means of a more detailed investigation of the chemicals' environmental fate in rivers and their aquatic toxicity.  相似文献   
108.
Mechanical stress is thought to regulate the expression of genes in the periodontal ligament (PDL) cells. Using a microarray approach, we recently identified a regulator of G-protein signaling 2 (RGS2) as an up-regulated gene in the PDL cells under compressive force. The RGS protein family is known to turn off G-protein signaling. G-protein signaling involves the production of cAMP, which is thought to be one of the biological mediators in response to mechanical stress. Here, we investigated the role of RGS2 in the PDL cells under mechanical stress. PDL cells derived from the ligament tissues of human premolar teeth were cultured in collagen gels and subjected to static compressive force. Compressive force application time-dependently enhanced RGS2 expression and intracellular cAMP levels. To examine the interrelationship between RGS2 and cAMP, the PDL cells were treated with 2',5'-dideoxyadenosine (DDA), an inhibitor of adenyl cyclase, or antisense S-oligonucleotide (S-ODN) to RGS2 under compressive force. DDA dose-dependently inhibited RGS2 stimulated by compressive force. Blockage of RGS2 by antisense S-ODN elevated the cAMP levels compared with controls. These results indicate that cAMP stimulates RGS2 expression, which in turn leads to a decrease in the cAMP production by inactivating the G-protein signaling in the mechanically stressed PDL cells.  相似文献   
109.
110.
纤毛-多囊蛋白复合物的功能或者结构异常,是导致常染色体显性多囊肾病的主要原因.该复合物除了被认为在正常的肾上皮细胞上起着机械和化学感受器的作用,可能在骨细胞中也有类似的作用.本文总结了多囊蛋白和纤毛的结构、分布特点以及在肾发育过程中所发挥的作用;着重综述了纤毛 多囊蛋白复合物在肾上皮细胞上作为机械和化学感受器,通过影响细胞内一系列的信号途径,调控细胞的基因转录和蛋白合成的最新研究进展,包括与细胞内钙离子变化有关的钙调神经磷酸酶-NFAT途径和PI3K-Atk途径,调控细胞周期的JAK-STAT途径,及维持正常肾结构的Wnt/β连环蛋白信号途径等;还将通过比较在肾上皮细胞上纤毛 多囊蛋白复合物所激活的信号传导途径和在骨细胞中传导机械刺激的信号转导途径的类同,提示在骨细胞中,纤毛 多囊蛋白复合物可能起着在肾上皮细胞上类似的机械感受器作用,为系统性阐明多囊肾病的发病机制,以及揭示失重或负重状态下骨细胞机械感受的分子机制提供了一个新思路.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号