首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2503篇
  免费   233篇
  国内免费   86篇
  2024年   3篇
  2023年   33篇
  2022年   47篇
  2021年   48篇
  2020年   78篇
  2019年   78篇
  2018年   81篇
  2017年   65篇
  2016年   98篇
  2015年   129篇
  2014年   129篇
  2013年   156篇
  2012年   137篇
  2011年   118篇
  2010年   77篇
  2009年   95篇
  2008年   116篇
  2007年   119篇
  2006年   103篇
  2005年   117篇
  2004年   89篇
  2003年   76篇
  2002年   84篇
  2001年   82篇
  2000年   74篇
  1999年   46篇
  1998年   69篇
  1997年   47篇
  1996年   63篇
  1995年   44篇
  1994年   33篇
  1993年   36篇
  1992年   37篇
  1991年   24篇
  1990年   28篇
  1989年   21篇
  1988年   28篇
  1987年   16篇
  1986年   19篇
  1985年   9篇
  1984年   14篇
  1983年   7篇
  1982年   9篇
  1981年   13篇
  1980年   8篇
  1979年   7篇
  1978年   4篇
  1977年   2篇
  1974年   3篇
  1958年   1篇
排序方式: 共有2822条查询结果,搜索用时 15 毫秒
91.
92.
Phenotypes respond to environments experienced directly by an individual, via phenotypic plasticity, or to the environment experienced by ancestors, via transgenerational environmental effects. The adaptive value of environmental effects depends not only on the strength and direction of the induced response but also on how long the response persists within and across generations, and how stably it is expressed across environments that are encountered subsequently. Little is known about the genetic basis of those distinct components, or even whether they exhibit genetic variation. We tested for genetic differences in the inducibility, temporal persistence, and environmental stability of transgenerational environmental effects in Arabidopsis thaliana. Genetic variation existed in the inducibility of transgenerational effects on traits expressed across the life cycle. Surprisingly, the persistence of transgenerational effects into the third generation was uncorrelated with their induction in the second generation. Although environmental effects for some traits in some genotypes weakened over successive generations, others were stronger or even in the opposite direction in more distant generations. Therefore, transgenerational effects in more distant generations are not merely caused by the retention or dissipation of those expressed in prior generations, but they may be genetically independent traits with the potential to evolve independently.  相似文献   
93.
94.
Two single nucleotide polymorphisms (SNPs) in the Human Hemochromatosis (HFE) gene, C282Y and H63D, are the major variants associated to altered iron status and it is well known that these mutations are in linkage disequilibrium with certain Human Leukocyte Antigen (HLA)-A alleles. In addition, the C282Y SNP has been previously suggested to confer susceptibility to acute lymphoblastic leukemia (ALL). We have aimed to assess the diagnosis utility of these polymorphisms in a population of Spanish subjects with suspicion of hereditary iron overload and to evaluate the effect of their associations with HLA-A alleles on the susceptibility to ALL. Both the 63DD [OR = 4.31 (1.7–11.2)] and 282YY (p for trend = 0.02) genotypes were more frequently found among subjects with suspicion of iron overload than among controls. 282YY carriers displayed significantly higher transferrin saturation index (TSI) values (p < 0.001) as well as serum iron (p = 0.01) and ferritin (p = 0.01) levels. In addition, transferrin levels were lower in these subjects (p = 0.01). Likewise, patients who were carriers of the compound heterozygous diplotype (282CY/63HD) showed significantly higher TSI and serum iron and ferritin concentrations. The H63D SNP did not significantly affect the analytical parameters measured. All 282YY carriers and 69.2% of compound heterozygotes showed an altered biochemical index. The frequencies of the HFE SNPs in ALL pediatric patients were lower than those found in controls, whereas the HLA-A*24 allele was significantly overrepresented in the patients group [OR = 3.76 (1.9–7.3)]. No HFE-HLA-A associations were found to modulate the ALL risk. These results suggest that it may be useful to test for both HFE H63D and C282Y polymorphisms in patients with iron overload, as opposed to just genotyping for the C282Y SNP, which is customary in some healthcare centers. These HFE variants and their associations with HLA-A alleles were not observed to be relevant for the susceptibility to ALL in our population.  相似文献   
95.
Sandhoff disease (SD) is an autosomal recessive lysosomal storage disease caused by mutations in the HEXB gene encoding the beta subunit of hexosaminidases A and B, two enzymes involved in GM2 ganglioside degradation. Eleven French Sandhoff patients with infantile or juvenile forms of the disease were completely characterized using sequencing of the HEXB gene. A specific procedure was developed to facilitate the detection of the common 5′-end 16 kb deletion which was frequent (36% of the alleles) in our study. Eleven other disease-causing mutations were found, among which four have previously been reported (c.850C>T, c.793T>G, c.115del and c.800_817del). Seven mutations were completely novel and were analyzed using molecular modelling. Two deletions (c.176del and c.1058_1060del), a duplication (c.1485_1487dup) and a nonsense mutation (c.552T>G) were predicted to strongly alter the enzyme spatial organization. The splice mutation c.558+5G>A affecting the intron 4 consensus splice site led to a skipping of exon 4 and to a truncated protein (p.191X). Two missense mutations were found among the patients studied. The c.448A>C mutation was probably a severe mutation as it was present in association with the known c.793T>G in an infantile form of Sandhoff disease and as it significantly modified the N-terminal domain structure of the protein. The c.171G>C mutation resulting in a p.W57C amino acid substitution in the N-terminal region is probably less drastic than the other abnormalities as it was present in a juvenile patient in association with the c.176del. Finally, this study reports a rapid detection of the Sandhoff disease-causing alleles facilitating genetic counselling and prenatal diagnosis in at-risk families.  相似文献   
96.
97.

Background

Biomedical data available to researchers and clinicians have increased dramatically over the past years because of the exponential growth of knowledge in medical biology. It is difficult for curators to go through all of the unstructured documents so as to curate the information to the database. Associating genes with diseases is important because it is a fundamental challenge in human health with applications to understanding disease properties and developing new techniques for prevention, diagnosis and therapy.

Methods

Our study uses the automatic rule-learning approach to gene–disease relationship extraction. We first prepare the experimental corpus from MEDLINE and OMIM. A parser is applied to produce some grammatical information. We then learn all possible rules that discriminate relevant from irrelevant sentences. After that, we compute the scores of the learned rules in order to select rules of interest. As a result, a set of rules is generated.

Results

We produce the learned rules automatically from the 1000 positive and 1000 negative sentences. The test set includes 400 sentences composed of 200 positives and 200 negatives. Precision, recall and F-score served as our evaluation metrics. The results reveal that the maximal precision rate is 77.8% and the maximal recall rate is 63.5%. The maximal F-score is 66.9% where the precision rate is 70.6% and the recall rate is 63.5%.

Conclusions

We employ the rule-learning approach to extract gene–disease relationships. Our main contributions are to build rules automatically and to support a more complete set of rules than a manually generated one. The experiments show exhilarating results and some improving efforts will be made in the future.  相似文献   
98.
Early life nutritional adversity is tightly associated with the development of long-term metabolic disorders. Particularly, maternal obesity and high-fat diets cause high risk of obesity in the offspring. Those offspring are also prone to develop hyperinsulinemia, hepatic steatosis and cardiovascular diseases. However, the precise underlying mechanisms leading to these metabolic dysregulation in the offspring remain unclear. On the other hand, disruptions of diurnal circadian rhythms are known to impair metabolic homeostasis in various tissues including the heart and liver. Therefore, we investigated that whether maternal obesity perturbs the circadian expression rhythms of clock, metabolic and inflammatory genes in offspring heart and liver by using RT-qPCR and Western blotting analysis. Offspring from lean and obese dams were examined on postnatal day 17 and 35, when pups were nursed by their mothers or took food independently. On P17, genes examined in the heart either showed anti-phase oscillations (Cpt1b, Pparα, Per2) or had greater oscillation amplitudes (Bmal1, Tnf-α, Il-6). Such phase abnormalities of these genes were improved on P35, while defects in amplitudes still existed. In the liver of 17-day-old pups exposed to maternal obesity, the oscillation amplitudes of most rhythmic genes examined (except Bmal1) were strongly suppressed. On P35, the oscillations of circadian and inflammatory genes became more robust in the liver, while metabolic genes were still kept non-rhythmic. Maternal obesity also had a profound influence in the protein expression levels of examined genes in offspring heart and liver. Our observations indicate that the circadian clock undergoes nutritional programing, which may contribute to the alternations in energy metabolism associated with the development of metabolic disorders in early life and adulthood.  相似文献   
99.
Melanin‐based coloration is widespread among vertebrates, yet the adaptive significance of such pigments remains elusive, particularly with regard to the link between melanin and immune‐mediated maternal effects. The aim of this study was to investigate whether melanin‐based coloration could signal the ability of mothers to mount a humoral response and to transfer maternal antibodies (Ab) to their young. We injected differently coloured (pale and dark) female feral pigeons (Columba livia) with Chlamydiae (a natural antigen) and Keyhole Limpet Haemocyanin (KLH, an artificial antigen), and found no significant difference in humoral response between differently coloured females. However, darker females transferred more Ab against Chlamydiae into their eggs than paler ones, despite similar circulating levels of Ab. In addition to this, melanin‐based coloration showed a high heritability value. This suggests that a genetically based coloured trait might be linked to the ability of females to transfer specific Ab against Chlamydiae (but not against KLH) to their offspring, independent of their ability to produce Ab. This suggests that transmission of maternal Ab is antigen dependent, and that melanin‐based coloration might signal female ability to transmit specific Ab against natural pathogens. © 2013 The Linnean Society of London  相似文献   
100.
Data are provided here showing that larval diapause in the tropical palm nut bruchid Pachymerus nucleorum (Fabricius) can extend up to a maximum of about five years, although for most individuals the duration ranges from 15 to 48 months. The data were obtained for insects originating from one source only that were held under one set of temperature and photoperiod conditions only so the wide variation in duration is attributed to maternal control. Staggering the adult emergence times of a parent’s progeny can be regarded as an evolutionary strategy that increases the chance that some at least encounter favourable biotic or abiotic conditions. It is believed that extended diapause may be quite widespread amongst insects, including those of temperate climates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号