首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4037篇
  免费   465篇
  国内免费   279篇
  4781篇
  2024年   18篇
  2023年   66篇
  2022年   87篇
  2021年   112篇
  2020年   148篇
  2019年   196篇
  2018年   174篇
  2017年   133篇
  2016年   181篇
  2015年   188篇
  2014年   183篇
  2013年   255篇
  2012年   188篇
  2011年   202篇
  2010年   137篇
  2009年   190篇
  2008年   193篇
  2007年   234篇
  2006年   170篇
  2005年   161篇
  2004年   135篇
  2003年   109篇
  2002年   142篇
  2001年   95篇
  2000年   98篇
  1999年   94篇
  1998年   100篇
  1997年   84篇
  1996年   79篇
  1995年   60篇
  1994年   62篇
  1993年   67篇
  1992年   41篇
  1991年   61篇
  1990年   48篇
  1989年   38篇
  1988年   44篇
  1987年   31篇
  1986年   21篇
  1985年   20篇
  1984年   38篇
  1983年   17篇
  1982年   25篇
  1981年   17篇
  1980年   5篇
  1979年   11篇
  1978年   5篇
  1977年   5篇
  1974年   4篇
  1973年   4篇
排序方式: 共有4781条查询结果,搜索用时 15 毫秒
981.
Models of parental investment typically assume that populations are well mixed and homogeneous and have devoted little attention to the impact of spatial variation in the local environment. Here, in a patch‐structured model with limited dispersal, we assess to what extent resource‐rich and resource‐poor mothers should alter the size of their young in response to the local environment in their patch. We show that limited dispersal leads to a correlation between maternal and offspring environments, which favours plastic adjustment of offspring size in response to local survival risk. Strikingly, however, resource‐poor mothers are predicted to respond more strongly to local survival risk, whereas resource‐rich mothers are predicted to respond less strongly. This lack of sensitivity on the part of resource‐rich mothers is favoured because they accrue much of their fitness through dispersing young. By contrast, resource‐poor mothers accrue a larger fraction of their fitness through philopatric young and should therefore respond more strongly to local risk. Mothers with more resources gain a larger share of their fitness through dispersing young partly because their fitness in the local patch is constrained by the limited number of local breeding spots. In addition, when resource variation occurs at the patch level, the philopatric offspring of resource‐rich mothers face stronger competition from the offspring of other local mothers, who also enjoy abundant resources. The effect of limited local breeding opportunities becomes less pronounced as patch size increases, but the impact of patch‐level variation in resources holds up even with many breeders per patch.  相似文献   
982.
Conventional gap‐filling procedures for eddy covariance (EC) data are limited to calculating ecosystem respiration (RE) and gross ecosystem productivity (PG) as well as missing values of net ecosystem productivity (FNEP). We develop additional postprocessing steps that estimate net primary productivity (PN), autotrophic (Ra), and heterotrophic respiration (Rh). This is based on conservation of mass of carbon (C), Monte Carlo (MC) simulation, and three ratios: C use efficiency (CUE, PN to PG), Ra to RE, and FNEP to RE. This procedure, along with the estimation of FNEP, RE, and PG, was applied to a Douglas‐fir dominated chronosequence on Vancouver Island, British Columbia, Canada. The EC data set consists of 17 site years from three sites: initiation (HDF00), pole/sapling (HDF88), and near mature (DF49), with stand ages from 1 to 56 years. Analysis focuses on annual C flux totals and C balance ratios as a function of stand age, assuming a rotation age of 56 years. All six C balance terms generally increased with stand age. Average annual PN by stand was 213, 750, and 1261 g C m−2 yr−1 for HDF00, HDF88, and DF49, respectively. The canopy compensation point, the year when the chronosequence switched from a source to a sink of C, occurred at stand age ca. 20 years. HDF00 and HDF88 were strong and moderate sources (FNEP=−581 and −138 g C m−2 yr−1), respectively, while DF49 was a moderate sink (FNEP=294 g C m−2 yr−1) for C. Differences between sites were greater than interannual variation (IAV) within sites and highlighted the importance of age‐related effects in C cycling. The validity of the approach is discussed using a sensitivity analysis, a comparison with growth and yield estimates from the same chronosequence, and an intercomparison with other chronosequences.  相似文献   
983.
1. Insects are commonly infected with bacterial endosymbionts. In addition to the costs and benefits associated with harbouring these symbionts, their rates of vertical and horizontal transmission are important determinants of symbiont prevalence. 2. Aphids are cyclical parthenogens and show virtually perfect maternal transmission of endosymbionts during asexual reproduction. Less clear is the role of the annual sexual generation, during which overwintering eggs are produced. Data from pea aphids (Acyrthosiphon pisum Harris) suggest that maternal transmission failures and horizontal transmission via males may occur under sexual reproduction at least occasionally. No such data exist for other aphid species. 3. In the present study, the rates of maternal and paternal transmission of facultative endosymbionts during sexual reproduction in the black bean aphid, Aphis fabae (Scopoli) were examined. Crosses were performed between clones infected with Hamiltonella defensa, clones infected with Regiella insecticola and clones without facultative endosymbionts, and eggs were overwintered under three different conditions. 4. Only one of 205 offspring from crosses testing for maternal transmission failed to inherit the symbiont present in the maternal clone, and in crosses testing for horizontal transmission, only one of 412 offspring acquired a facultative symbiont from the father. 5. These results show that in A. fabae, maternal transmission of H. defensa and R. insecticola is extremely reliable also during sexual reproduction, indicating that maternal transmission failures are unlikely to exert a significant influence on frequencies of infection in the field. Paternal transmission of endosymbionts was exceedingly rare, suggesting that this route of horizontal transmission may be less important than hitherto assumed.  相似文献   
984.
985.
Females of many bird species prefer mating with older males, presumably because they provide superior parental care and possibly superior genes. A previous study found that female small tree finches (Camarhynchus parvulus) preferred pairing with old males and had a higher breeding success when paired with old males because their nests were more concealed, higher up in the canopy and therefore less likely to be depredated. However, causes for brood loss have changed over the last decade: predation of small tree finch nests has decreased, whereas brood losses due to parasitism by the invasive parasitic fly Philornis downsi have increased. In the present study, we investigated (a) how the change in predation and parasitism by P. downsi influenced the breeding success of small tree finches, (b) whether there were still differences in breeding success between young and old males, (c) whether P. downsi infestation had a differential effect on nests of young and old males and (d) whether young and old males differed in foraging success. During 2012–2016, we found an overall low influence of predation and a high influence of P. downsi, but neither differed between nests of young and old males. Nests of old males had more fledglings than those of young males. However, the difference in breeding success disappeared when P. downsi numbers were experimentally reduced by injecting an insecticide into nests. This indicates that older males were able to compensate for the detrimental effects of parasitism.  相似文献   
986.
987.
Gas exchange and chlorophyll a fluorescence measurements of expanding and adult leaves of four plant species were compared under field conditions. The pioneer species (PS) tended to have thinner leaves with lower nitrogen content and higher stomatal density compared to forest species (FS). Expanding leaves featured lower photosynthetic pigment contents and gas exchange capacity than adult leaves consistent with an immature photosynthetic apparatus. At the time of maximum irradiance, sun-exposed leaves of both PS and FS showed alteration of initial, variable, and maximum fluorescence as well as their ratios indicating photoinhibition. However, leaves recovered to some extent at predawn, suggesting the activation of photoprotective mechanisms. Sun-exposed leaves had comparable responses to high irradiance.  相似文献   
988.
A mother can influence a trait in her offspring both by the genes she transmits (Mendelian inheritance) and by maternal attributes that directly affect that trait in her offspring (maternal inheritance). Maternal inheritance can alter the direction, rate, and duration of adaptive evolution from standard Mendelian models and its impact on adaptive evolution is virtually unexplored in natural populations. In a hierarchical quantitative genetic analysis to determine the magnitude and structure of maternal inheritance in the winter annual plant, Collinsia verna, I consider three potential models of inheritance. These range from a standard Mendelian model estimating only direct (i.e., Mendelian) additive and environmental variance components to a maternal inheritance model estimating six additive and environmental variance components: direct additive and environmental variances; maternal additive and environmental variances; and the direct-maternal additive () and environmental covariances. The structure of maternal inheritance differs among the 10 traits considered at four stages in the life cycle. Early in the life cycle, seed weight and embryo weight display substantial , a negative , and a positive . Subsequently, cotyledon diameter displays and of roughly the same magnitude and negative . For fall rosettes, leaf number and length are best described by a Mendelian model. In the spring, leaf length displays maternal inheritance with significant and and a negative . All maternally inherited traits show significant negative . Predicted response to selection under maternal inheritance depends on and as well as . Negative results in predicted responses in the opposite direction to selection for seed weight and embryo weight and predicted responses near zero for all subsequent maternally inherited traits. Maternal inheritance persists through the life cycle of this annual plant for a number of size-related traits and will alter the direction and rate of evolutionary response in this population.  相似文献   
989.
The initial eggs produced by broiler breeder hens are relatively small compared with later in the production cycle. An evaluation of indices related to hatchability is required when these eggs are to be used for the production of broiler chicks. Two experiments were conducted to evaluate characteristics related to the hatchability of eggs from pullet-to-breeder transition phase, at 25 and 27 weeks of age, and from the peak of production period and five weeks later, at 32 and 37 weeks of age. Eggs from birds 25 weeks had a lesser fertility in Experiment 1. Mortality occurred unevenly in early (1–5 days), middle (6–17 days) and late (18–21 days) incubation, and greater mortality was observed after the internal membrane was ruptured. The younger the hen, the lighter the egg, chick, and shell, and the longer the time required to complete the hatching process. In Experiment 2, greater mortalities were observed at the early period (1–5 days) and after “pipping” of the internal and external membranes. Embryos from heavy eggs of breeder hens 37 weeks of age took less time to complete the hatching process. Results indicated the larger the egg, the heavier the chick and shell, and the lesser the shell percentage. As breeder age advanced, characteristics related to egg fertility and hatchability improved.  相似文献   
990.
Mothers should adjust the size of propagules to the selectiveforces to which these offspring will be exposed. Usually, alarger propagule size is favored when young are exposed to highmortality risk or conspecific competition. Here we test 2 predictionson how egg size should vary with these selective agents. Whenoffspring are cared for by parents and/or alloparents, protectionmay reduce the predation risk to young, which may allow mothersto invest less per single offspring. In the cooperatively breedingcichlid Neolamprologus pulcher, brood care helpers protect groupoffspring and reduce the latters' mortality rate. Therefore,females are expected to reduce their investment per egg whenmore helpers are present. In a first experiment, we tested thisprediction by manipulating the helper number. In N. pulcher,helpers compete for dispersal opportunities with similar-sizedindividuals of neighboring groups. If the expected future competitionpressure on young is high, females should increase their investmentper offspring to give them a head start. In a second experiment,we tested whether females produce larger eggs when perceivedneighbor density is high. Females indeed reduced egg size withincreasing helper number. However, we did not detect an effectof local density on egg size, although females took longer toproduce the next clutch when local density was high. We arguethat females can use the energy saved by adjusting egg sizeto reduced predation risk to enhance future reproductive output.Adaptive adjustment of offspring size to helper number may bean important, as yet unrecognized, strategy of cooperative breeders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号