首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5003篇
  免费   816篇
  国内免费   1346篇
  2024年   33篇
  2023年   174篇
  2022年   153篇
  2021年   239篇
  2020年   303篇
  2019年   344篇
  2018年   280篇
  2017年   357篇
  2016年   356篇
  2015年   299篇
  2014年   299篇
  2013年   369篇
  2012年   238篇
  2011年   289篇
  2010年   251篇
  2009年   330篇
  2008年   322篇
  2007年   340篇
  2006年   265篇
  2005年   269篇
  2004年   206篇
  2003年   196篇
  2002年   167篇
  2001年   141篇
  2000年   114篇
  1999年   106篇
  1998年   93篇
  1997年   89篇
  1996年   57篇
  1995年   51篇
  1994年   51篇
  1993年   37篇
  1992年   36篇
  1991年   38篇
  1990年   39篇
  1989年   17篇
  1988年   26篇
  1987年   33篇
  1986年   15篇
  1985年   29篇
  1984年   15篇
  1983年   7篇
  1982年   19篇
  1981年   11篇
  1980年   13篇
  1979年   10篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1958年   4篇
排序方式: 共有7165条查询结果,搜索用时 15 毫秒
931.
Yan J  Zhu X  Zhao J H 《农业工程》2009,29(3):150-154
Effects of grassland conversion to cropland and forest on soil organic carbon (SOC), dissolved organic carbon (DOC) in the farming-pastoral ecotone of Inner Mongolia were investigated by direct field sampling. SOC content and DOC content in soil decreased after grassland were shifted to forest or cropland, in the sequence of grassland soil > forest soil > cropland soil. SOC stock declined by 18% after grassland shifted from to forest. Reclamation of cropland for 10 years, 15 years and 20 years lost SOC in 0–30 cm soil layer, by 34%, 14% and 18%, respectively, compared with that of grassland. DOC in 3 soil layers was within 21.1–26.5 mg/L in grassland, 12.1–14.6 mg/L in forest soil, and 8.0–14.0 mg/L in cropland soil. Correlation analysis indicated that SOC content and DOC content were positively dependent on total nitrogen content (p < 0.05), but negatively on bulk density or land use type (p < 0.05). DOC was positively correlated SOC (p < 0.01). Moreover, SOC content could be quantitatively described by a linear combination of land use types (p = 0.000, r2 = 0.712), and DOC content by a linear combination of two soil-related variables, land use types and SOC (p = 0.000, r2 = 0.861).  相似文献   
932.
It is expected that the CO2 concentration of the Earth’s atmosphere will reach 600–1000 ppm by the end of the 21st century. Therefore, in this study, we evaluated the effects of elevated CO2 concentrations on the development of rain-fed spring wheat in an attempt to identify a practical pathway to increase crop production. To accomplish this, a field experiment was conducted at Guyuan Experimental Station in a semiarid region of China during 2005–2007. During this experiment, the CO2 concentration was increased to 40.0 ppm and supplemental irrigation and nitrogenous fertilizer (N fertilizer) were applied. The experimental results showed that the elevated CO2 concentration significantly improved the thousand-grain weight and the grain number per spike. Furthermore, supplemental irrigation and N fertilizer application during the elongation and booting stage of rain-fed spring wheat in conjunction with an elevated CO2 concentration improved the water use efficiency (WUE), nitrogen use efficiency (NUE), thousand-grain weight, and the yield by 14.6%, 39.6%, 9.3%, and 14.7%, respectively, when compared to groups subjected to the same treatment but not grown under elevated CO2 concentrations. Furthermore, the spring wheat yield was improved by 81.8% in response to an elevated CO2 concentration, 60 mm of supplemental irrigation and applied N fertilizer (37.5 g m?2 NH4NO3). However, the presence of an elevated CO2 concentration without supplemental irrigation and N fertilizer only resulted in an increase in the wheat yield of 7.8%. Consequently, the combination of elevated CO2 concentration, supplemental irrigation and N fertilizer application played an important role in the improvement of WUE, NUE, thousand-grain weight, and grain yield of rain-fed spring wheat in this region.  相似文献   
933.
Question: How does above‐ground net primary production (ANPP) differ (estimated from remotely sensed data) among vegetation units in sub‐humid temperate grasslands? Location: Centre‐north Uruguay. Methods: A vegetation map of the study area was generated from LANDSAT imagery and the landscape configuration described. The functional heterogeneity of mapping units was analysed in terms of the fraction of photosynthetically active radiation absorbed by green vegetation (fPAR), calculated from the normalized difference vegetation index (NDVI) images provided by the moderate resolution imaging spectroradiometer (MODIS) sensor. Finally, the ANPP of each grassland class was estimated using NDVI and climatic data. Results: Supervised classification presented a good overall accuracy and moderate to good average accuracy for grassland classes. Meso‐xerophytic grasslands occupied 45% of the area, Meso‐hydrophytic grasslands 43% and Lithophytic steppes 6%. The landscape was shaped by a matrix of large, unfragmented patches of Meso‐xerophytic and Meso‐hydrophytic grasslands. The region presented the lowest anthropic fragmentation degree reported for the Rio de la Plata grasslands. All grassland units showed bimodal annual fPAR seasonality, with spring and autumn peaks. Meso‐hydrophytic grasslands showed a radiation interception 10% higher than the other units. On an annual basis, Meso‐hydrophytic grasslands produced 3800 kg dry matter (DM) ha?1 yr?1 and Meso‐xerophytic grasslands and Lithophytic steppes around 3400 kg·DM·ha?1·yr?1. Meso‐xerophytic grasslands had the largest spatial variation during most of the year. The ANPP temporal variation was higher than the fPAR variability. Conclusions: Our results provide valuable information for grazing management (identifying spatial and temporal variations of ANPP) and grassland conservation (identifying the spatial distribution of vegetation units).  相似文献   
934.
Wildfire is an important ecological disturbance factor in most Mediterranean ecosystems. In the Mediterranean Basin, most shrub species can regenerate after fire by resprouting or seeding. Here, we hypothesize that post-fire regenerative syndromes may potentially co-vary with traits directly related to functional properties involved in resource use. Thus, seeders with a shorter life span and smaller size would have lower water-use efficiency (WUE) than re-sprouting species and would take up nutrients such as nitrogen from more superficial parts of the soil. To test this hypothesis, we compared leaf 13C and 15N signatures from 29 co-existing species with different post-fire regeneration strategies. We also considered life form as an additional explanatory variable of the differences between post-fire regenerative groups. Our data support the hypothesis that seeder species (which mostly evolved in the Quaternary under a Mediterranean climate) have lower WUE and less stomatal control than non-seeders (many of which evolved under different climatic conditions in the Tertiary) and consequently greater consumption of water per unit biomass. This would be related to their smaller life forms, which tend to have lower WUE and shorter life and leaf lifespan. Differences in 15N also support the hypothesis that resprouters have deeper root systems than non-resprouters. The study supports the hypothesis of an overlap between plant functional traits and plant attributes describing post-disturbance resilience.  相似文献   
935.
Costs of reproduction are any aspect of current reproduction that has the potential to reduce survivorship or reproductive output, and may include physiological costs or increased risks. Females of many species experience increased body mass, and increased girth, when gravid. Increased body mass reduces running speed and increases the cost of locomotion during pregnancy, but few studies have examined the cost of increased girth. If increased girth of gravid females reduces access to shelter from predators or the elements, increased girth could constitute a cost of reproduction. In the laboratory, we experimentally tested whether access to crevices was limited in viviparous, saxicolous female lizards (Eulamprus brachysoma), which use crevices for shelter, by measuring access to artificial crevices of known widths, and body height during and after pregnancy. Gravid E. brachysoma had significantly greater body height (11.2% on average), and as a result were forced to use significantly wider crevices (18.4% wider on average) than post‐parturition. Females with larger clutch sizes had wider mid‐bodies and required larger crevices. Control females, which were not gravid at either time of testing, showed no significant change in the size of crevice they could enter over time. If access to narrow crevices provides advantages such as protection from predators, or is important for thermoregulation, then gravid females may suffer a cost of reproduction because their access to narrower crevices is limited.  相似文献   
936.
Mountain forests and their soils provide ecological services such as maintenance of biodiversity, provision of clean water, carbon capture and forage for livestock rearing, which is one of the principal economic activities in mountain areas. However, surprisingly little is known about livestock impact in South American mountain forest soils. With the aim of understanding how livestock and topography influence patterns of forest cover, soil compaction, soil loss and soil chemical properties, we analysed these parameters in 100 Polylepis australis woodland plots situated in the humid subtropical mountains of Central Argentina. We used distance from the nearest ranch as an objective index of historical livestock impact and measured standard topographic variables. Our main results reveal that distance from ranch in all cases partly explains tree canopy cover, soil loss, soil compaction and soil chemical properties; suggesting a strong negative effect of livestock. Intermediate altitudes had more tree canopy cover, while landscape roughness – a measure of the variability in slope inclination and aspect – was negatively associated to soil impedance and acidity, and positively associated to soil organic matter content. Finally, flatter areas were more acid. We conclude that livestock has had a substantial influence on forest soil degradation in the Mountains of Central Argentina and possibly other similar South American mountains. Soil degradation should be incorporated into decision making when considering long‐term forest sustainability, or when taking into account retaining livestock for biodiversity conservation reasons. Where soil loss and degradation are ongoing, we recommend drastic reductions in livestock density.  相似文献   
937.
Consistent, repeatable segregation of plant species along hydrological gradients is an established phenomenon that must in some way reflect a trade‐off between plants' abilities to tolerate the opposing constraints of drought and waterlogging. In C3 species tissue carbon isotope discrimination (δ13C) is known to vary sensitively in response to stomatal behaviour, reflecting stomatal limitation of photosynthesis during the period of active growth. However, this has not been studied at fine‐spatial scale in natural communities. We tested how δ13C varied between species and sexes of individuals in the family Restionaceae growing along a monitored hydrological gradient. Twenty Restionaceae species were investigated using species‐level phylogeny at two sites in the Cape Floristic Region, a biodiversity hotspot. A spatial overlap analysis showed the Restionaceae species segregated significantly (P < 0.001) at both sites. Moreover, there were significant differences in δ13C values among the Restionaceae species (P < 0.001) and between male and female individuals of each species (P < 0.01). However, after accounting for phylogeny, species δ13C values did not show any significant correlation with the hydrological gradient. We suggest that some other variable (e.g. plant phenology) could be responsible for masking a simple response to water availability.  相似文献   
938.
Aim The controls of gross radiation use efficiency (RUE), the ratio between gross primary productivity (GPP) and the radiation intercepted by terrestrial vegetation, and its spatial and temporal variation are not yet fully understood. Our objectives were to analyse and synthesize the spatial variability of GPP and the spatial and temporal variability of RUE and its climatic controls for a wide range of vegetation types. Location A global range of sites from tundra to rain forest. Methods We analysed a global dataset on photosynthetic uptake and climatic variables from 35 eddy covariance (EC) flux sites spanning between 100 and 2200 mm mean annual rainfall and between ?13 and 26°C mean annual temperature. RUE was calculated from the data provided by EC flux sites and remote sensing (MODIS). Results Rainfall and actual evapotranspiration (AET) positively influenced the spatial variation of annual GPP, whereas temperature only influenced the GPP of forests. Annual and maximum RUE were also positively controlled primarily by annual rainfall. The main control parameters of the growth season variation of gross RUE varied for each ecosystem type. Overall, the ratio between actual and potential evapotranspiration and a surrogate for the energy balance explained a greater proportion of the seasonal variation of RUE than the vapour pressure deficit (VPD), AET and precipitation. Temperature was important for determining the intra‐annual variability of the RUE at the coldest energy‐limited sites. Main conclusions Our analysis supports the idea that the annual functioning of vegetation that is adapted to its local environment is more constrained by water availability than by temperature. The spatial variability of annual and maximum RUE can be largely explained by annual precipitation, more than by vegetation type. The intra‐annual variation of RUE was mainly linked to the energy balance and water availability along the climatic gradient. Furthermore, we showed that intra‐annual variation of gross RUE is only weakly influenced by VPD and temperature, contrary to what is frequently assumed. Our results provide a better understanding of the spatial and temporal controls of the RUE and thus could lead to a better estimation of ecosystem carbon fixation and better modelling.  相似文献   
939.
Carbon accumulation in agricultural soils after afforestation: a meta-analysis   总被引:11,自引:0,他引:11  
Deforestation usually results in significant losses of soil organic carbon (SOC). The rate and factors determining the recovery of this C pool with afforestation are still poorly understood. This paper provides a review of the influence of afforestation on SOC stocks based on a meta-analysis of 33 recent publications (totaling 120 sites and 189 observations), with the aim of determining the factors responsible for the restoration of SOC following afforestation. Based on a mixed linear model, the meta-analysis indicates that the main factors that contribute to restoring SOC stocks after afforestation are: previous land use, tree species planted, soil clay content, preplanting disturbance and, to a lesser extent, climatic zone. Specifically, this meta-analysis (1) indicates that the positive impact of afforestation on SOC stocks is more pronounced in cropland soils than in pastures or natural grasslands; (2) suggests that broadleaf tree species have a greater capacity to accumulate SOC than coniferous species; (3) underscores that afforestation using pine species does not result in a net loss of the whole soil-profile carbon stocks compared with initial values (agricultural soil) when the surface organic layer is included in the accounting; (4) demonstrates that clay-rich soils (> 33%) have a greater capacity to accumulate SOC than soils with a lower clay content (< 33%); (5) indicates that minimizing preplanting disturbances may increase the rate at which SOC stocks are replenished; and (6) suggests that afforestation carried out in the boreal climate zone results in small SOC losses compared with other climate zones, probably because trees grow more slowly under these conditions, although this does not rule out gains over time after the conversion. This study also highlights the importance of the methodological approach used when developing the sampling design, especially the inclusion of the organic layer in the accounting.  相似文献   
940.
Andean plant species are predicted to shift their distributions, or ‘migrate,’ upslope in response to future warming. The impacts of these shifts on species' population sizes and their abilities to persist in the face of climate change will depend on many factors including the distribution of individuals within species' ranges, the ability of species to migrate and remain at equilibrium with climate, and patterns of human land‐use. Human land‐use may be especially important in the Andes where anthropogenic activities above tree line may create a hard barrier to upward migrations, imperiling high‐elevation Andean biodiversity. In order to better understand how climate change may impact the Andean biodiversity hotspot, we predict the distributional responses of hundreds of plant species to changes in temperature incorporating population density distributions, migration rates, and patterns of human land‐use. We show that plant species from high Andean forests may increase their population sizes if able to migrate onto the expansive land areas above current tree line. However, if the pace of climate change exceeds species' abilities to migrate, all species will experience large population losses and consequently may face high risk of extinction. Using intermediate migration rates consistent with those observed for the region, most species are still predicted to experience population declines. Under a business‐as‐usual land‐use scenario, we find that all species will experience large population losses regardless of migration rate. The effect of human land‐use is most pronounced for high‐elevation species that switch from predicted increases in population sizes to predicted decreases. The overriding influence of land‐use on the predicted responses of Andean species to climate change can be viewed as encouraging since there is still time to initiate conservation programs that limit disturbances and/or facilitate the upward migration and persistence of Andean plant species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号