首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5003篇
  免费   816篇
  国内免费   1346篇
  2024年   33篇
  2023年   174篇
  2022年   153篇
  2021年   239篇
  2020年   303篇
  2019年   344篇
  2018年   280篇
  2017年   357篇
  2016年   356篇
  2015年   299篇
  2014年   299篇
  2013年   369篇
  2012年   238篇
  2011年   289篇
  2010年   251篇
  2009年   330篇
  2008年   322篇
  2007年   340篇
  2006年   265篇
  2005年   269篇
  2004年   206篇
  2003年   196篇
  2002年   167篇
  2001年   141篇
  2000年   114篇
  1999年   106篇
  1998年   93篇
  1997年   89篇
  1996年   57篇
  1995年   51篇
  1994年   51篇
  1993年   37篇
  1992年   36篇
  1991年   38篇
  1990年   39篇
  1989年   17篇
  1988年   26篇
  1987年   33篇
  1986年   15篇
  1985年   29篇
  1984年   15篇
  1983年   7篇
  1982年   19篇
  1981年   11篇
  1980年   13篇
  1979年   10篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1958年   4篇
排序方式: 共有7165条查询结果,搜索用时 31 毫秒
901.
Sex differences in spatial learning are found in many species of mammals and even in invertebrates. Results from laboratory mouse studies, however, have been inconsistent in comparison to studies of humans, laboratory rats and wild rodent species. Here we re-examined this question in C57BL/6J mice that were exposed to enriched environments using two tasks, an object recognition task and a place learning task where mice were motivated by exploratory drive, not aversive conditioning or food restriction. Using these methods, we found a female advantage for object recognition, similar to the female advantage found in humans and laboratory rats. In the place learning task, male performance was unimpaired by intra-maze cue deletion but impaired by extra-maze cue masking. Female mice, in contrast, were able to navigate accurately under both cue conditions. In summary, by utilizing testing and housing methods that were more species appropriate, we found sex-specific patterns of cue encoding and place learning in better accordance with prior results from other mammalian species. The implication of these results is that the C57BL/6J mouse is an appropriate model for the study of cognitive sex differences in mammals.  相似文献   
902.
Acoustic telemetry was used to examine the size of daily activity space, small-scale movement patterns, and water quality preferences of juvenile bull sharks in the Caloosahatchee River, Florida. Movement pattern analysis included rate of movement, swimming depth, linearity, direction, tidal influence, diel pattern, and correlation with environmental variables. Manual tacking occurred before and after a large freshwater influx which divided the sharks into two groups based on movement patterns. The first group displayed increased rate of movement, distance traveled, and space utilization at night, and movements correlated with salinity, temperature, and dissolved oxygen. The second group had an increased rate of movement, distance traveled, and space utilization during the day, and movements correlated with temperature, dissolved oxygen, turbidity and pH. These juvenile bull sharks displayed distinct diel movement patterns that were influenced by physical factors, which may account for the distribution of this top-level predator in the Caloosahatchee River.  相似文献   
903.
Life cycle assessment of Australian automotive door skins   总被引:1,自引:0,他引:1  
Background, aim, and scope  Policy initiatives, such as the EU End of Life Vehicle (ELV) Directive for only 5% landfilling by 2015, are increasing the pressure for higher material recyclability rates. This is stimulating research into material alternatives and end-of-life strategies for automotive components. This study presents a Life Cycle Assessment (LCA) on an Australian automotive component, namely an exterior door skin. The functional unit for this study is one door skin set (4 exterior skins). The material alternatives are steel, which is currently used by Australian manufacturers, aluminium and glass-fiber reinforced polypropylene composite. Only the inputs and outputs relative to the door skin production, use and end-of-life phases were considered within the system boundary. Landfill, energy recovery and mechanical recycling were the end-of-life phases considered. The aim of the study is to highlight the most environmentally attractive material and end-of-life option. Methods  The LCA was performed according to the ISO 14040 standard series. All information considered in this study (use of fossil and non fossil based energy resources, water, chemicals etc.) were taken up in in-depth data. The data for the production, use and end-of-life phases of the door skin set was based upon softwares such as SimaPro and GEMIS which helped in the development of the inventory for the different end-of-life scenarios. In other cases, the inventory was developed using derivations obtained from published journals. Some data was obtained from GM-Holden and the Co-operative research Centre for Advanced Automotive Technology (AutoCRC), in Australia. In cases where data from the Australian economy was unavailable, such as the data relating to energy recovery methods, a generic data set based on European recycling companies was employed. The characterization factors used for normalization of data were taken from (Saling et. al. Int J Life Cycle Assess 7(4):203–218 2002) which detailed the method of carrying out an LCA. Results  The production phase results in maximum raw material consumption for all materials, and it is higher for metals than for the composite. Energy consumption is greatest in the use phase, with maximum consumption for steel. Aluminium consumes most energy in the production phase. Global Warming Potential (GWP) also follows a trend similar to that of energy consumption. Photo Oxidants Creation Potential (POCP) is the highest for the landfill scenario for the composite, followed by steel and aluminium. Acidification Potential (AP) is the highest for all the end-of-life scenarios of the composite. Ozone Depletion Potential (ODP) is the highest for the metals. The net water emissions are also higher for composite in comparison to metals despite high pollution in the production phases of metallic door skins. Solid wastes are higher for the metallic door skins. Discussion  The composite door skin has the lowest energy consumption in the production phase, due to the low energy requirements during the manufacturing of E-glass and its fusion with polypropylene to form sheet molding compounds. In general, the air emissions during the use phase are strongly dependent on the mass of the skins, with higher emissions for the metals than for the composite. Material recovery through recycling is the highest in metals due to efficient separation techniques, while mechanical recycling is the most efficient for the composite. The heavy steel skins produce the maximum solid wastes primarily due to higher fuel consumption. Water pollution reduction benefit is highest in case of metals, again due to the high efficiency of magnetic separation technique in the case of steel and eddy current separation technique in the case of aluminium. Material recovery in these metals reduces the amount of water needed to produce a new door skin set (water employed mainly in the ingot casting stage). Moreover, the use of heavy metals, inorganic salts and other chemicals is minimized by efficient material recovery. Conclusions  The use of the studied type of steel for the door skins is a poor environmental option in every impact category. Aluminium and composite materials should be considered to develop a more sustainable and energy efficient automobile. In particular, this LCA study shows that glass-fiber composite skins with mechanical recycling or energy recovery method could be environmentally desirable, compared to aluminium and steel skins. However, the current limit on the efficiency of recycling is the prime barrier to increasing the sustainability of composite skins. Recommendations and perspectives  The study is successful in developing a detailed LCA for the three different types of door skin materials and their respective recycling or end-of-life scenarios. The results obtained could be used for future work on an eco-efficiency portfolio for the entire car. However, there is a need for a detailed assessment of toxicity and risk potentials arising from each of the four different types of door skin sets. This will require greater communication between academia and the automotive industry to improve the quality of the LCA data. Sensitivity analysis needs to be performed such as the assessment of the impact of varying substitution factors on the life cycle of a door skin. Incorporation of door skin sets made of new biomaterials need to be accounted for as another functional unit in future LCA studies. Discussion contributions to this article from the readership would the highly welcome. The authors  相似文献   
904.
The influence of elephants on woody vegetation cover varies from place to place. In part this may be due to the way elephants utilize space across landscapes and within their home ranges in response to the availability and distribution of food. We used location data from 18 cows at six study sites across an east to west rainfall gradient in southern Africa to test whether wet- and dry-season home-range sizes, evenness of space use within seasonal home ranges and range overlap between seasons and between years, differed between wet and dry savannas. We then tested whether the quantity, distribution and seasonal stability in vegetation productivity, a coarse measure of food for elephants, explained differences. Elephants in wet savannas had smaller wet- and dry-season home ranges and also returned to a higher proportion of previously visited grid cells between seasons and between years than elephants living in dry savannas. Wet-season home-range sizes were explained by seasonal vegetation productivity while dry-season home-range sizes were explained by heterogeneity in the distribution of vegetation productivity. The influence of the latter on dry-season home ranges differed among structural vegetation classes. Range overlap between seasons and between years was related to inter-seasonal and inter-annual stability in vegetation productivity, respectively. Evenness of elephant spatial use within home ranges did not differ between savanna types, but it was explained by seasonal vegetation productivity and heterogeneity in the distribution of vegetation productivity during the wet season. Differences in elephant spatial use patterns between wet and dry savannas according to vegetation structure and season may need to be included in the development of site-specific objectives and management approaches for African elephants.  相似文献   
905.
The population dynamics of Myzus persicae were investigated in the field in a year without releases of Aphidius gifuensis (1998–1999), in a year with A. gifuensis releases (2000–2001) and several years later (2005–2007). The results showed that both high mean population densities and damage rates did not differ between 1998 and 1999, but were significantly lower in 2000–2001 and 2005–2007. Moreover, farmers also reported the decrease of M. persicae populations and attributed the declines to augmentative releases of A. gifuensis in their own fields, indicating farmers’ recognition in the effectiveness of A. gifuensis for M. persicae control. In addition, compared with the historical data on pesticide use for M. persicae control, the number of insecticide applications and cost of M. persicae control was sustained at a low level in 2007 (several years after release of A. gifuensis). This suggests that the augmentative releases of A. gifuensis could be effective and sustainable in M. persicae control.  相似文献   
906.
Macrofungal taxa and human population in Italy’s regions   总被引:1,自引:0,他引:1  
Fungi are relatively understudied, particularly in terms of biogeographical patterns. We analyse whether there is a spatial correlation between macrofungi (Basidiomycota) and human population (both in terms of size and rate of change) in Italy’s regions. Although current fungal taxonomic richness increases with increasing number of inhabitants (censused in 1986 and 2006 and predicted for 2026) and with their density, these relationships are not significant when controlling for variations in area amongst regions. This result, along with other recent independent studies, suggests that the large-scale spatial correlation of people and species can be often explained by both variables correlating with a third factor such as area, habitat heterogeneity or energy availability. Macrofungal richness significantly increases with percentage of forest cover, but not with percentage of protected area, suggesting that the conservation of Italian fungi needs to be addressed also outside the current network of national and regional nature reserves. The absence of any significant association of the estimate of macrofungal taxa with human population change observed in the last and predicted for the next two decades implies that there is no current clear trend towards a change of the ratio between macrofungal taxa and human presence at this scale of analysis. Further work at a higher resolution is needed to assess the consequences for Italy’s fungal biodiversity of the abandonment of marginal land and the expansion of urbanized areas in regions of high environmental productivity.  相似文献   
907.
Osteogenesis imperfecta (OI) is a genetic disease characterized by fragile bones, skeletal deformities and, in severe cases, prenatal death that affects more than 1 in 10,000 individuals. Here we show by full atomistic simulation in explicit solvent that OI mutations have a significant influence on the mechanical properties of single tropocollagen molecules, and that the severity of different forms of OI is directly correlated with the reduction of the mechanical stiffness of individual tropocollagen molecules. The reduction of molecular stiffness provides insight into the molecular‐scale mechanisms of the disease. The analysis of the molecular mechanisms reveals that physical parameters of side‐chain volume and hydropathy index of the mutated residue control the loss of mechanical stiffness of individual tropocollagen molecules. We propose a model that enables us to predict the loss of stiffness based on these physical characteristics of mutations. This finding provides an atomistic‐level mechanistic understanding of the role of OI mutations in defining the properties of the basic protein constituents, which could eventually lead to new strategies for diagnosis and treatment the disease. The focus on material properties and their role in genetic diseases is an important, yet so far only little explored, aspect in studying the mechanisms that lead to pathological conditions. The consideration of how material properties change in diseases could lead to a new paradigm that may expand beyond the focus on biochemical readings alone and include a characterization of material properties in diagnosis and treatment, an effort referred to as materiomics.  相似文献   
908.
Although tool use occurs in diverse species, its complexity may mark an important distinction between humans and other animals. Chimpanzee tool use has many similarities to that seen in humans, yet evidence of the cumulatively complex and constructive technologies common in human populations remains absent in free-ranging chimpanzees. Here we provide the first evidence that chimpanzees have a latent capacity to socially learn to construct a composite tool. Fifty chimpanzees were assigned to one of five demonstration conditions that varied in the amount and type of information available in video footage of a conspecific. Chimpanzees exposed to complete footage of a chimpanzee combining the two components to retrieve a reward learned to combine the tools significantly more than those exposed to more restricted information. In a follow-up test, chimpanzees that constructed tools after watching the complete demonstration tended to do so even when the reward was within reach of the unmodified components, whereas those that spontaneously solved the task (without seeing the modification process) combined only when necessary. Social learning, therefore, had a powerful effect in instilling a marked persistence in the use of a complex technique at the cost of efficiency, inhibiting insightful tool use.  相似文献   
909.
Chitosan (CHT) is a natural compound able to activate the plant own defence machinery against pathogen attacks and to reduce both transpiration and stomatal opening when applied as foliar spray. The data here reported show that CHT-induced antitranspirant activity in bean plants is mediated by ABA, whose level raised over threefold in treated leaves, 24 h after foliar spraying. This is thought to induce partial stomatal closure via a H2O2-mediated process, as confirmed by scanning electron microscopy (SEM) and histo-cytochemistry, and, in turn, a decrease of stomatal conductance to water vapor (Gw) and transpiration rate (E), assessed by gas exchange measurements. The relatively high internal CO2 concentration (Ci) values, suggest the occurrence of a slight decrease in carboxylation efficiency after CHT treatment, which however did not prevail over stomatal limitations. The intrinsic water use efficiency (WUEi) of CHT treated plants was not statistically different from controls and the maximal photochemical efficiency (Fv/Fm) of PSII was not affected. Moreover, CHT determined a stimulation of the xanthophyll cycle towards de-epoxidation state. On the whole, these results, besides confirming the effectiveness of CHT in reducing plant transpiration, prove that the mechanism underlying this activity differs from that showed by the commercial antitranspirant Vapor Gard® (VP). In fact, the efficacy of the latter is based on the formation of a thin antitranspirant film over the leaf and not on the reduction of stomatal opening. Finally, suggestions for possible use of the two antitranspirants in different environmental conditions are discussed.  相似文献   
910.
We studied a two-person game regarding deforestation in human-environment relationships. Each landowner manages a single land parcel where the state of land-use is forested, agricultural, or abandoned. The landowner has two strategies available: forest conservation and deforestation. The choice of deforestation provides a high return to the landowner, but it degrades the forest ecosystem services produced on a neighboring land parcel managed by a different landowner. Given spatial interactions between the two landowners, each landowner decides which strategy to choose by comparing the expected discounted utility of each strategy. Expected discounted utility is determined by taking into account the current and future utilities to be received, according to the state transition on the two land parcels. The state transition is described by a Markov chain that incorporates a landowner's choice about whether to deforest and the dynamics of agricultural abandonment and forest regeneration. By considering a stationary distribution of the Markov chain for land-use transitions, we derive explicit conditions for Nash equilibrium. We found that a slow regeneration of forests favors mutual cooperation (forest conservation). As the forest regenerates faster, mutual cooperation transforms to double Nash equilibria (mutual cooperation and mutual defection), and finally mutual defection (deforestation) leads to a unique Nash equilibrium. Two different types of social dilemma emerge in our deforestation game. The stag-hunt dilemma is most likely to occur under an unsustainable resource supply, where forest regenerates extremely slowly but agricultural abandonment happens quite rapidly. In contrast, the prisoner's dilemma is likely under a persistent or circulating supply of resources, where forest regenerates rapidly and agricultural abandonment occurs slowly or rapidly. These results show how humans and the environment mutually shape the dilemma structure in forest management, implying that solutions to dilemmas depend on environmental properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号