首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   4篇
  国内免费   16篇
  2022年   1篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   7篇
  2014年   4篇
  2013年   11篇
  2012年   11篇
  2011年   17篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   8篇
  2004年   5篇
  2003年   8篇
  2002年   3篇
  2001年   5篇
  2000年   11篇
  1999年   8篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1983年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
81.
Annona cherimola is a woody perennial species in the Annonaceae family that produces edible fruits and has economic importance in several regions of the world with subtropical climates. Together with other 10‐12 species, A. cherimola belongs to the section Atta of the Annona genus with a center of origin in Central America and the Caribbean. Species of the section Atta produce soft skin ripe fruits with raised areoles bounded by recessed furrows. Annona cherimola is the only species of the section naturally found in the Andean region of South America. Currently, no information is available at the molecular level on the phylogenetic relationships of most of the species of Atta and closely related sections in Annona. In order to fill this gap, in this work a phylogenetic approach was performed using five coding and non‐coding plastid DNA regions, to determine the phylogenetic relationships between A. cherimola and other related species included in Atta and other sections of the genus. The results obtained support recent studies that demonstrated the likely Mesoamerican origin of A. cherimola based on biogeographical analysis with SSR markers, rather than the previously considered South American origin hypothesis. In addition, the species belonging to the Atta section did not show monophyly. Finally, A. cherimola and A. pruinosa seem to be phylogenetically close species and additional studies are needed to discern the relations between them.  相似文献   
82.
Aletris,containing approximately 21 species,is the largest genus in Nartheciaceae,and is disjunctively distributed in eastern Asia and eastern North America.Its delimitation has been controversial beca...  相似文献   
83.
84.
蒟蒻薯属(薯蓣科)植物DNA条形码研究   总被引:6,自引:0,他引:6  
蒟蒻薯属(Tacca)植物种间在形态上差别不大,导致分类上存在一定的困难.DNA条形码是一种利用短的DNA标准片段来鉴别和发现物种的方法.本研究利用核基因ITS片段和叶绿体基因trn H-psbA,rbcL,matK片段对蒟蒻薯属6个种的DNA条形码进行研究,对4个DNA片段可用性,种内种间变异,barcode gap进行了分析,采用Tree-based和BBA两种方法比较不同序列的鉴定能力.结果显示:单片段ITS正确鉴定率最高,片段组合rbcL+matK正确鉴定率最高.支持CBOL植物工作组推荐的条码组合rbcL+matK可作为蒟蒻薯属物种鉴定的标准条码,建议ITS片段作为候选条码.丝须蒟蒻薯Tacca integrifolia采自西藏的居群与马来西亚居群形成了2个不同的遗传分支,且两者在形态上也存在一定的差异,很可能是一个新种.  相似文献   
85.
DNA barcoding constitutes a fundamental tool for species identification, especially for highly diverse geographic regions. Here, we characterize and evaluate the plant core barcoding regions matK and rbcL to identify the 25 conifer species from the state of Hidalgo, Mexico, including 10 species in various threat categories. Sequence quality, linguistic complexity, and the presence of the barcode gap were estimated. Two methods were compared for successful species identification: BRONX (Barcode Recognition Obtained with Nucleotide eXposés) and the least inclusive clade. We generated 77 sequences for matK and 88 for rbcL. The matK region had higher haplotype diversity and nucleotide diversity (Π), including six indels. The analysis of 77 specimens with complete sequences (matK + rbcL) resulted in 21 nonspecies-specific unique haplotypes for the 25 conifer species. Higher sequence quality and linguistic complexity were observed in rbcL than in matK. Every diagnosable species had a barcode gap. Ninety-seven specimens were assigned unambiguously to family and genus, regardless of the marker or method employed. The analysis of matK with BRONX produced the highest species level identification success (44%). Despite the low specimen identification success at the specific level, it will be possible to establish local management, conservation, and monitoring projects for at least half of the threatened species even when specimens do not exhibit diagnostic morphological characters. The low divergence between closely related species may result from the slow rate of molecular evolution of the core barcoding markers or from hybridization or incomplete lineage sorting. Similar identification success is expected for groups with comparable life history traits under similar conditions as this study. A reduction in the geographic area will not necessarily translate into higher identification success, especially for high-diversity regions and centres of diversification.  相似文献   
86.
中国特有诸葛菜复合群的系统发育关系   总被引:2,自引:0,他引:2  
利用5.8S核糖体DNA全长间隔序列(ITS/5.8S)和叶绿体基因mat K对中国原产诸葛菜复合群的系统发育关系进行了分析研究。ITS序列结果支持中国诸葛菜复合群分为两支:一支由湖北诸葛菜和太白诸葛菜组成;另一支由诸葛菜和铺散诸葛菜组成。mat K的序列分析结果表明,在中国诸葛菜复合群的系统发育树中,铺散诸葛菜和诸葛菜处于基部位置。结合以前的核型分析和本文的研究结果,我们不支持将湖北诸葛菜和太白诸葛菜归隶于诸葛菜,而支持我们之前提出的两种可能的原始细胞型的进化假说。另外,根据生物地理学分析,推测从长江中下游到秦岭地区是中国原产诸葛菜的近代分化中心。  相似文献   
87.
Molecular phylogenetic analyses of 26 of the 28 species of Ourisia , including eight of ten subspecies and two purported natural hybrids, are presented and used to examine the biogeography of the genus, which is distributed in subalpine to alpine habitats of South America, New Zealand and Tasmania. Gondwanan vicariance, often cited as the cause of this classic austral biogeographical pattern, was rejected by parametric bootstrapping of our combined dataset. Alternatively, various lines of evidence are presented in favour of a South American origin of Ourisia and subsequent dispersal to Australasia. Specifically, the genus likely arose in the Andes of central Chile and spread to southern Chile and Argentina, to the north-central Andes, and finally to Tasmania and New Zealand. The ancestor of the New Zealand species probably first arrived on the South Island, where the New Zealand species of Ourisia are most diverse, and migrated to the North and Stewart Islands. Because the Tasmanian and New Zealand species are sister to one another, the direction of dispersal between these two areas is equivocal. These results agree with other molecular phylogenetic studies that show that past dispersal between southern hemisphere continents has played an important role in the evolutionary history of many high-elevation austral plants. Our data also show that within South America, many of the geographical barriers (with the exception of the Atacama Desert) that have played a role in the evolution of other plant groups have not affected Ourisia species. Within New Zealand, the phylogeny and biogeography of species of Ourisia coincide with the geological history of the country and patterns of other alpine plants. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 479–513.  相似文献   
88.
用matK序列分析探讨木兰属植物的系统发育关系   总被引:2,自引:0,他引:2  
用木兰科Magnoliaceae 57种植物的matK基因序列构建了该科的系统发育分支图。结果表明: (1)木兰属Magnolia L.是一个因为性状的趋同演化而建立的多系类群; (2)木兰亚属subgen. Magnolia和玉兰亚属subgen. Yulania (Spach) Reichenb.亲缘关系较远, 支持将后者从该属中分出建立玉兰属Yulania Spach, 木兰亚属作为木兰属保留; (3)木兰亚属的sect. Splendentes Dandy ex Vazquez组与皱种组sect. Rytidospermum Spach的两个美洲种M. macrophylla Michaux和M. dealbata Zucc.亲缘关系较近, 荷花玉兰组sect. Theorhodon Spach与常绿组sect. Gwillimia DC.的亲缘关系较近; (4)盖裂木属Talauma Juss.可以成立, 而其分布于亚洲的Blumiana Blume组可归入木兰属; (5)拟单性木兰属Parakmeria Hu &; Cheng、华盖木属Manglietiastrum Law以及单性木兰属Kmeria (Pierre) Dandy形成一个单系群, 与玉兰亚属和含笑属Michelia L.的亲缘关系较近。花的着生位置不足以作为木兰科的分族依据, 含笑族Michelieae和木兰族Magnolieae的特征及其界定应做修改。将玉兰亚属从木兰属分出后, 木兰属与含笑属无性状交叉,成为两个区别明显的属。  相似文献   
89.
BACKGROUND AND AIMS: Karyological variation in the Mediterranean genus Borago and cytogeography of subgenus Buglossites in Corsica, Sardinia and the Tuscan Archipelago were investigated in combination with a molecular phylogenetic analysis aimed at elucidating relationships between subgenera and taxa with different chromosome features. METHODS: Karyotype analysis was performed on population samples of B. pygmaea, B. morisiana, B. trabutii and B. officinalis. Phylogenetic analyses were based on ITS1 nrDNA and matK cpDNA sequences. KEY RESULTS: Four base numbers were found, x = 6, 8, 9 and 15, and three ploidy levels based on x = 8. In subgenus Buglossites the Sardinian endemic B. morisiana is diploid with 2n = 18, while B. pygmaea includes three allopatric cytotypes with 2n = 30 (Sardinia), 2n = 32 (southern Corsica) and 2n = 48 (central northern Corsica and Capraia). In subgenus Borago, the Moroccan endemic B. trabutii and the widespread B. officinalis have 2n = 12 and 2n = 16, respectively. Molecular data support the monophyly of Borago, while relationships in subgenus Borago remain unclear. Borago trabutii appears as the earliest divergent lineage and is sister to a clade with B. officinalis, B. morisiana and B. pygmaea. Subgenus Buglossites is also monophyletic, but no correspondence between ITS1 phylogeny and B. pygmaea cytotypes occurs. CONCLUSIONS: Chromosome variation in Borago is wider than previously known. Two base numbers may represent the ancestral condition in this small genus, x = 6 or x = 8. An increase in chromosome number and karyotype asymmetry, a decrease in chromosome size and heterochromatin content, and the appearance of polyploidy are the most significant karyological changes associated with the divergence of the Buglossites clade. High ITS1 variation in the tetra- and hypotetraploid races of B. pygmaea suggests a multiple origin, while the lower polymorphism of the hexaploid race and its allopatric distribution in the northernmost part of the range is better explained with a single origin via union of unreduced and reduced gametes.  相似文献   
90.
The family Pennantiaceae and its relationships to Apiales   总被引:1,自引:1,他引:0  
The early evolution of the flowering plant order Apiales is discussed based on information from morphology and DNA sequences from four genes ( ndhF , rbcL , atpB and matK ). A model-based approach of analysis, Bayesian inference, is used to analyse the data and the results are compared with those from parsimony analysis. In particular, a new family of the order, the monogeneric Pennantiaceae from New Zealand and Australia, aids in the understanding of how the order originated. The ancestor of Apiales was probably a shrub or small tree with alternate, simple leaves, paniculate inflorescences, five-merous flowers with free petals, and drupes.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 141 , 1–24.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号