首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   4篇
  国内免费   16篇
  2022年   1篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   7篇
  2014年   4篇
  2013年   11篇
  2012年   11篇
  2011年   17篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   8篇
  2004年   5篇
  2003年   8篇
  2002年   3篇
  2001年   5篇
  2000年   11篇
  1999年   8篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1983年   1篇
排序方式: 共有135条查询结果,搜索用时 15 毫秒
31.
Reported in the present paper is a robust chloroplast matK gene phylogeny of Taxaceae, Cephalotaxaceae and Podocarpaceae represented by 10 species of seven genera, with three species of the Pinaceae as outgroups. The matk length of the 13 species ranges from 1488 bp to 1548 bp, which results from indels, in particular, 1-bp(base pair) insertion near the 3’ end of the gene in some groups. A 27 bp deletion was found at the nucleotide position 213 from the 5’ end of the matk gene of Pseudotaxus chienii. The aligned sequences used in PAUP and MEGA analyses were 1568 bp and 1494 bp respectively. In the matK gene, the rates of variation at the first, second and third codon positions are similar although the mean frequency of synonymous substitution is approximately twice as high as that of nonsynonymous substitution. Branch-and-Bound search found only one most parsimonious tree (tree length = 895, CI = 0.850, RI = 0. 876), in which all clades were strongly supported by bootstrap test. According to the tree, Taxaceae and Cephalotaxaceae are monophyletic groups, and the sister group relationship between the two families was confirmed. Taxus is closely related to Pseudotaxus while Torreya is the sister group of Amentotaxus. In addition, the close relationship between Nageia and Podocarpus was resolved. The present study supports the generic status of Pseudotaxus and Amentotaxus in point of cladistic analysis and genetic distance, but contra-dicts the establishment of the family Nageiaceae.  相似文献   
32.
Premise of study: Phylogenetic relationships of the papilionoid legumes (Papilionoideae) reveal that the early branches are more highly diverse in floral morphology than are other clades of Papilionoideae. This study attempts for the first time to comprehensively sample the early-branching clades of this economically and ecologically important legume subfamily and thus to resolve relationships among them. • Methods: Parsimony and Bayesian phylogenetic analyses of the plastid matK and trnL intron sequences included 29 genera not yet sampled in matK phylogenies of the Papilionoideae, 11 of which were sampled for DNA sequence data for the first time. • Key results: The comprehensively sampled matK phylogeny better resolved the deep-branching relationships and increased support for many clades within Papilionoideae. The potentially earliest-branching papilionoid clade does not include any genus traditionally assigned to tribe Swartzieae. Dipterygeae is monophyletic with the inclusion of Monopteryx. The genera Aldina and Amphimas represent two of the nine main but as yet unresolved lineages comprising the large 50-kb inversion clade within papilionoids. The quinolizidine-alkaloid-accumulating genistoid clade is expanded to include a strongly supported subclade containing Ormosia and the previously unplaced Clathrotropis s.s., Panurea, and Spirotropis. Camoensia is the first-branching genus of the core genistoids. • Conclusions: The well-resolved phylogeny of the earliest-branching papilionoids generated in this study will greatly facilitate the efforts to redefine and stabilize the classification of this legume subfamily. Many key floral traits did not often predict phylogenetic relationships, so comparative studies on floral evolution and plant–animal interactions, for example, should also benefit from this study.  相似文献   
33.
The phylogeny of Pooideae, one of the largest subfamilies of grasses, has been intensively studied during the past years. To investigate the early evolutionary splits in Pooideae we used a broad sample of genera with uncertain placement, some of which have not been studied in molecular phylogenetics before, complemented by representatives from other lineages of this subfamily. Morphological, cytogenetic and biogeographical analyses were added to the molecular sequence work on chloroplast matK–3’trnK and nuclear ITS. According to chloroplast DNA data, a new and well-supported lineage was identified among the early branches. It consisted of Phaenosperma and a larger group of genera encompassing Anisopogon, Danthoniastrum, Duthiea, Metcalfia, Pseudodanthonia (inclusion resting on ITS and morphology), Sinochasea and Stephanachne. Based on structural characters we suggest to keep Phaenosperma under the monotypic tribe Phaenospermateae and to accommodate the other genera under a new tribe Duthieeae, which is morphologically well-defined by synapomorphic spikelet features. Megalachne and Podophorus were not part of the early diverging Pooideae lineages but belong to the Aveneae/Poeae complex. Morphological characteristics of Duthieeae are discussed with respect especially to Stipeae and reveal consistent differences between both tribes. The genera of Duthieeae and the major lineages of Stipeae are keyed. A cytogenetic survey of exemplary taxa corroborates high chromosome base numbers as prevailing within the early diverging lineages of Pooideae, but chromosome sizes are more highly varied than previously reported. Ecogeographical analyses point to warm and humid conditions as the ancestral bioclimatic niche of Phaenosperma and Duthieeae, whereas adaptation to cold and drought occurred only in a part of Duthieeae but was obviously less successful than in the widespread and much more species-rich tribe Stipeae. The distribution of Duthieeae with species-poor or monotypic genera in mountains of the northern hemisphere and Anisopogon as an outlier in Australia suggests relict character.  相似文献   
34.
The phylogeny of Linaceae is examined, with sampling from the 13 commonly recognized genera of the family and sequence data from the plastid genes matK and rbcL. Representatives of 24 additional families of the order Malpighiales are included in the analyses, with members of Celastrales, Fabales, Fagales, Oxalidales and Rosales used as outgroups. Linaceae and both subfamilies, the temperate Linoideae and the tropical Hugonioideae, are found to be monophyletic in likelihood‐ and parsimony‐based analyses, although the monophyly of Hugonioideae is not well supported. Average divergence time estimates using rbcL indicate that the subfamilies diverged from each other during the Palaeocene, approximately 60 million years ago. No sister group to Linaceae is consistently identified in these analyses, and relationships among families of Malpighiales are not well resolved. In accord with previous estimates of Linoideae phylogeny, Linum is shown to be nonmonophyletic, with several segregate genera nested within it, but the relationships of the south‐east Asian genera, Anisadenia, Reinwardtia and Tirpitzia, remain uncertain. In Hugonioideae, Indorouchera and Philbornea are found to be closely related to members of Hugonia section Durandea. Relationships of the neotropical genera Hebepetalum and Roucheria to the palaeotropical hugonioids are not consistently resolved. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 165 , 64–83.  相似文献   
35.
36.
基于两个叶绿体基因(matK和rbcL)和一个核糖体基因(18S rDNA)的序列分析,对代表了基部被子植物和单子叶植物主要谱系分支的86科126属151种被子植物(单子叶植物58科86属101种)进行了系统演化关系分析。研究结果表明由胡椒目Piperales、樟目Laurales、木兰目Magnoliales和林仙目Canellales构成的真木兰类复合群是单子叶植物的姐妹群。单子叶植物的单系性在3个序列联合分析中得到98%的强烈自展支持。联合分析鉴定出9个单子叶植物主要谱系(广义泽泻目Alismatales、薯蓣目Dioscorcales、露兜树目Pandanales、天门冬目Asparagalcs、百合目Liliales、棕榈目Arecales、禾本目Poales、姜目Zingiberales、鸭跖草目Commelinales)和6个其他被子植物主要谱系(睡莲目Nymphaeales、真双子叶植物、木兰目、樟目、胡椒目、林仙目)。在单子叶植物内,菖蒲目Acorales(菖蒲属Acorus)是单子叶植物最早分化的一个谱系,广义泽泻目(包括天南星科Araceae和岩菖蒲科Toficldiaccae)紧随其后分化出来,二者依次和其余单子叶植物类群构成姐妹群关系。无叶莲科Petrosaviaceac紧随广义的泽泻目之后分化出来,无叶莲科和剩余的单子叶植物类群形成姐妹群关系,并得到了较高的支持率。继无叶莲科之后分化的类群形成两个大的分支:一支是由露兜树目和薯蓣目构成,二者形成姐妹群关系:另一支是由天门冬目、百合目和鸭跖草类复合群组成,三者之间的关系在单个序列分析和联合分析中不稳定,需要进一步扩大取样范围来确定。在鸭跖草类复合群分支内,鸭跖草目和姜目的姐妹群关系在3个序列联合分析和2个序列联合分析的严格一致树中均得到强烈的自展支持,获得的支持率均是100%。但是,对于棕榈目和禾本目在鸭跖草类中的系统位置以及它们和鸭跖草目-姜目之间的关系,有待进一步解决。值得注意的是,无叶莲科与其他单子叶植物类群(除菖蒲目和泽泻目外)的系统关系在本文中获得较高的自展支持率,薯蓣目和天门冬目的单系性在序列联合分析中都得到了较好的自展支持,而这些在以往的研究中通常支持率较低。鉴于菖蒲科和无叶莲科独特的系统演化位置,本文支持将其分别独立成菖蒲目和无叶莲目Petrosavialcs的分类学界定。  相似文献   
37.
Charophytes (Charales) are benthic algae with a complex morphology. They are vulnerable to ecosystem changes, such as eutrophication, and are red‐listed in many countries. Accurate identification of Chara species is critical for understanding their diversity and for documenting changes in species distribution. Species delineation is, however, complicated, because of high phenotypic plasticity. We used barcodes of the ITS2, matK and rbcL regions to test if the distribution of barcode haplotypes among individuals is consistent with species boundaries as they are currently understood. The study included freshly collected and herbarium material of 91 specimens from 10 European countries, Canada and Argentina. Results showed that herbarium specimens are useful as a source of material for genetic analyses for aquatic plants like Chara. rbcL and matK had highest sequence recoverability, but rbcL had a somewhat lower discriminatory power than ITS2 and matK. The tree resulting from the concatenated data matrix grouped the samples into six main groups contrary to a traditional morphological approach that consisted of 14 different taxa. A large unresolved group consisted of C. intermedia, C. hispida, C. horrida, C. baltica, C. polyacantha, C. rudis, C. aculeolata, and C. corfuensis. A second unresolved group consisted of C. virgata and C. strigosa. The taxa within each of the unresolved groups shared identical barcode sequences on the 977 positions of the concatenated data matrix. The morphological differences of taxa within both unresolved groups include the number and length of spine cells, stipulodes, and bract cells. We suggest that these morphological traits have less taxonomic relevance than hitherto assumed.  相似文献   
38.
The DNA barcoding technique developed for species identification has recently been adapted for ecological studies (e.g. host plant identification). Comprehensive barcode databases, covering most species inhabiting areas, habitats or communities of interest are essential for reliable and efficient identification of plants. Here we present a three‐barcode (plastid rbcL and matK genes and the trnL intron) database for xerothermic plant species from central Europe. About 85% of the xerothermic plant species (126 out of c. 150) known to be associated with xerothermic habitats were collected and barcoded. The database contains barcodes for 117 (rbcL and trnL) and 96 (matK) species. Interspecific nucleotide distances were in the ranges 0–17.9% (0–3.2% within genera) for rbcL, 0–44.4% (0–3.1%) for trnL and 0–52.5% (0–10.9%) for matK. Blast‐searching of each sequence in the database against the entire database showed that species‐level identification is possible for 89.6% (rbcL), 98.4% (trnL) and 96.4% (matK) of examined plant species. The utility of the presented database for identification of host plants was demonstrated using two insect species associated with xerothermic habitats: the oligophagous leaf‐beetle Cheilotoma musciformis (for which two host plants in Fabaceae were identified) and the polyphagous weevil Polydrusus inustus (which was found to feed on 14 host plants, mostly Rosaceae, Asteraceae and Fabaceae). The developed database will be useful in various applications, including biodiversity, phylogeography, conservation and ecology. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 576–592.  相似文献   
39.
Zingiber shuanglongensis sp.nov.is a species endemic to Taiwan,China,that has been found in Nantou and Kaohsiung.In this study,the new Zingiber species is illustrated and the results of morphological a...  相似文献   
40.
The indiscriminate collections of Paphiopedilum species from the wild for their exotic ornamental flowers have rendered these plants endangered. Although the trade of these endangered species from the wild is strictly forbidden, it continues unabated in one or other forms that elude the current identification methods. DNA barcoding that offers identification of a species even if only a small fragment of the organism at any stage of development is available could be of great utility in scrutinizing the illegal trade of both endangered plant and animal species. Therefore, this study was undertaken to develop DNA barcodes of Indian species of Paphiopedilum along with their three natural hybrids using loci from both the chloroplast and nuclear genomes. The five loci tested for their potential as effective barcodes were RNA polymerase-β subunit (rpoB), RNA polymerase-β' subunit (rpoC1), Rubisco large subunit (rbcL) and maturase K (matK) from the chloroplast genome and nuclear ribosomal internal transcribed spacer (nrITS) from the nuclear genome. The intra- and inter-specific divergence values and species discrimination rates were calculated by Kimura 2 parameter (K2P) method using mega 4.0. The matK with 0.9% average inter-specific divergence value yielded 100% species resolution, thus could distinguish all the eight species of Paphiopedilum unequivocally. The species identification capability of these sequences was further confirmed as each of the matK sequences was found to be unique for the species when a blast analysis of these sequences was carried out on NCBI. nrITS, although had 4.4% average inter-specific divergence value, afforded only 50% species resolution. DNA barcodes of the three hybrids also reflected their parentage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号