首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19448篇
  免费   1214篇
  国内免费   594篇
  21256篇
  2024年   28篇
  2023年   301篇
  2022年   425篇
  2021年   416篇
  2020年   496篇
  2019年   551篇
  2018年   624篇
  2017年   483篇
  2016年   472篇
  2015年   588篇
  2014年   805篇
  2013年   1322篇
  2012年   604篇
  2011年   756篇
  2010年   638篇
  2009年   805篇
  2008年   823篇
  2007年   927篇
  2006年   879篇
  2005年   825篇
  2004年   719篇
  2003年   599篇
  2002年   636篇
  2001年   445篇
  2000年   405篇
  1999年   402篇
  1998年   316篇
  1997年   340篇
  1996年   284篇
  1995年   312篇
  1994年   308篇
  1993年   284篇
  1992年   269篇
  1991年   257篇
  1990年   227篇
  1989年   232篇
  1988年   224篇
  1987年   220篇
  1986年   190篇
  1985年   247篇
  1984年   321篇
  1983年   189篇
  1982年   301篇
  1981年   242篇
  1980年   169篇
  1979年   124篇
  1978年   58篇
  1977年   73篇
  1976年   32篇
  1974年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Currently, neuroproteomic approaches aimed at the profiling of total brain areas generally mirror the expression of the most abundant proteins, but fail to uncover less abundant proteins. By contrast, the focus on typical brain subproteomes, (e.g., synaptic vesicles, synaptic terminal membranes or the postsynaptic density), may give a more specific insight into brain function. Subproteomes are accessible via several strategies, including subcellular fractionation or affinity-based pull-down approaches. Combined with mass spectrometric quantification approaches, subcellular proteomics is expected to reveal differences in the protein constitution of related cellular organelles. Focusing on novel functions and mechanistic models, we review recent data on the analysis of brain-derived organelles and subproteomes, including presynaptic termini, synaptic vesicles, neuronal plasma membranes, postsynaptic density and neuromelanin granules, which were identified as novel lysosome-related organelles within the human brain.  相似文献   
992.
A rugged sample-preparation method for comprehensive affinity enrichment of phosphopeptides from protein digests has been developed. The method uses a series of chemical reactions to incorporate efficiently and specifically a thiol-functionalized affinity tag into the analyte by barium hydroxide catalyzed β-elimination with Michael addition using 2-aminoethanethiol as nucleophile and subsequent thiolation of the resulting amino group with sulfosuccinimidyl-2-(biotinamido) ethyl-1,3-dithiopropionate. Gentle oxidation of cysteine residues, followed by acetylation of α- and ε-amino groups before these reactions, ensured selectivity of reversible capture of the modified phosphopeptides by covalent chromatography on activated thiol sepharose. The use of C18 reversed-phase supports as a miniaturized reaction bed facilitated optimization of the individual modification steps for throughput and completeness of derivatization. Reagents were exchanged directly on the supports, eliminating sample transfer between the reaction steps and thus, allowing the immobilized analyte to be carried through the multistep reaction scheme with minimal sample loss. The use of this sample-preparation method for phosphopeptide enrichment was demonstrated with low-level amounts of in-gel-digested protein. As applied to tryptic digests of α-S1- and β-casein, the method enabled the enrichment and detection of the phosphorylated peptides contained in the mixture, including the tetraphosphorylated species of β-casein, which has escaped chemical procedures reported previously. The isolates proved highly suitable for mapping the sites of phosphorylation by collisionally induced dissociation. β-Elimination, with consecutive Michael addition, expanded the use of the solid-phase-based enrichment strategy to phosphothreonyl peptides and to phosphoseryl/phosphothreonyl peptides derived from proline-directed kinase substrates and to their O-sulfono- and O-linked β-N-acetylglucosamine (O-GlcNAc)-modified counterparts. Solid-phase enzymatic dephosphorylation proved to be a viable tool to condition O-GlcNAcylated peptide in mixtures with phosphopeptides for selective affinity purification. Acetylation, as an integral step of the sample-preparation method, precluded reduction in recovery of the thiolation substrate caused by intrapeptide lysine-dehydroalanine cross-link formation. The solid-phase analytical platform provides robustness and simplicity of operation using equipment readily available in most biological laboratories and is expected to accommodate additional chemistries to expand the scope of solid-phase serial derivatization for protein structural characterization.  相似文献   
993.
Quinoxaline derivatives (quinoxalines) comprise a class of drugs that have been widely used as animal antimicrobial agents and feed additives. Although the metabolism of quinoxaline drugs has been mostly studied using chicken liver microsomes, the biochemical mechanism of biotransformation of these chemicals in the chicken has yet to be characterized. In this study, using bacteria produced enzymes, we demonstrated that both CYP1A4 and CYP1A5 participate in the oxidative metabolism of quinoxalines. For CYP1A5, three hydroxylated metabolites of quinocetone were generated. In addition, CYP1A5 is able to hydroxylate carbadox. For CYP1A4, only one hydroxylated product of quinocetone on the phenyl ring was identified. Neither CYP1A5 nor CYP1A4 showed hydroxylation activity towards mequindox and cyadox. Our results suggest that CYP1A4 and CYP1A5 have different and somewhat overlapping substrate specificity in quinoxaline metabolism, and CYP1A5 represents a crucial enzyme in hydroxylation of both quinocetone and carbadox.  相似文献   
994.
The renin–angiotensin system (RAS) is a complex network that regulates blood pressure, electrolyte and fluid homeostasis, as well as the function of several organs. Angiotensin-converting enzyme 2 (ACE2) was identified as an enzyme that negatively regulates the RAS by converting Ang II, the main bioactive molecule of the RAS, to Ang 1–7. Thus, ACE2 counteracts the role of angiotensin-converting enzyme (ACE) which generates Ang II from Ang I. ACE and ACE2 have been implicated in several pathologies such as cardiovascular and renal disease or acute lung injury. In addition, ACE2 has functions independent of the RAS: ACE2 is the receptor for the SARS coronavirus and ACE2 is essential for expression of neutral amino acid transporters in the gut. In this context, ACE2 modulates innate immunity and influences the composition of the gut microbiota, which can explain diarrhea and intestinal inflammation observed in Hartnup disorder, Pellagra, or under conditions of severe malnutrition. Here we review and discuss the diverse functions of ACE2 and its relevance to human pathologies.  相似文献   
995.
In spliceosomes, dynamic RNA/RNA and RNA/protein interactions position the pre-mRNA substrate for the two chemical steps of splicing. Not all of these interactions have been characterized, in part because it has not been possible to arrest the complex at clearly defined states relative to chemistry. Previously, it was shown in yeast that the DEAD/H-box protein Prp22 requires an extended 3′ exon to promote mRNA release from the spliceosome following second-step chemistry. In line with that observation, we find that shortening the 3′ exon blocks cleaved lariat intron and mRNA release in human splicing extracts, which allowed us to stall human spliceosomes in a new post-catalytic complex (P complex). In comparison to C complex, which is blocked at a point following first-step chemistry, we detect specific differences in RNA substrate interactions near the splice sites. These differences include extended protection across the exon junction and changes in protein crosslinks to specific sites in the 5′ and 3′ exons. Using selective reaction monitoring (SRM) mass spectrometry, we quantitatively compared P and C complex proteins and observed enrichment of SF3b components and loss of the putative RNA-dependent ATPase DHX35. Electron microscopy revealed similar structural features for both complexes. Notably, additional density is present when complexes are chemically fixed, which reconciles our results with previously reported C complex structures. Our ability to compare human spliceosomes before and after second-step chemistry has opened a new window to rearrangements near the active site of spliceosomes, which may play roles in exon ligation and mRNA release.  相似文献   
996.
How dietary fatty acids are absorbed into the enterocyte and transported to the ER is not established. We tested the possibility that caveolin-1 containing lipid rafts and endocytic vesicles were involved. Apical brush border membranes took up 15% of albumin bound 3H-oleate whereas brush border membranes from caveolin-1 KO mice took up only 1%. In brush border membranes, the 3H-oleate was in the detergent resistant fraction of an OptiPrep gradient. On OptiPrep gradients of intestinal cytosol, we also found the 3H-oleate in the detergent resistant fraction, separate from OptiPrep gradients spiked with 3H-oleate or 3H-triacylglycerol. Caveolin-1 immuno-depletion of cytosol removed 91% of absorbed 3H-oleate whereas immuno-depletion using IgG, or anti-caveolin-2 or -3 or anti-clathrin antibodies removed 20%. Electron microscopy showed the presence of caveolin-1 containing vesicles in WT mouse cytosol that were 4 fold increased by feeding intestinal sacs 1 mM oleate. No vesicles were seen in caveolin-1 KO mouse cytosol. Caveolin-1 KO mice gained less weight on a 23% fat diet and had increased fat in their stool compared to WT mice. We conclude that dietary fatty acids are absorbed by caveolae in enterocyte brush border membranes, are endocytosed, and transported in cytosol in caveolin-1 containing endocytic vesicles.  相似文献   
997.
The pan‐eukaryotic endoplasmic reticulum (ER) membrane protein Arv1 has been suggested to play a role in intracellular sterol transport. We tested this proposal by comparing sterol traffic in wild‐type and Arv1‐deficient Saccharomyces cerevisiae. We used fluorescence microscopy to track the retrograde movement of exogenously supplied dehydroergosterol (DHE) from the plasma membrane (PM) to the ER and lipid droplets and high performance liquid chromatography to quantify, in parallel, the transport‐coupled formation of DHE esters. Metabolic labeling and subcellular fractionation were used to assay anterograde transport of ergosterol from the ER to the PM. We report that sterol transport between the ER and PM is unaffected by Arv1 deficiency. Instead, our results indicate differences in ER morphology and the organization of the PM lipid bilayer between wild‐type and arv1Δ cells suggesting a distinct role for Arv1 in membrane homeostasis. In arv1Δ cells, specific defects affecting single C‐terminal transmembrane domain proteins suggest that Arv1 might regulate membrane insertion of tail‐anchored proteins involved in membrane homoeostasis .  相似文献   
998.
《Biomarkers》2013,18(4):367-377
Although cigarette smoking is recognized as the most important cause of chronic obstructive pulmonary disease (COPD), the pathophysiological mechanisms underlying the lung function decline are not well understood. Using off-line strong cation exchange fractionation with RP-LC-ESI-MS/MS and robust database searching, 1758 tryptic peptides were identified in plasma samples from cigarette smokers. Using two statistical approaches, 30 peptides were identified to be associated with the annualized rate of lung function decline over 5 years among smokers with COPD characterized as having rapid (n?=?18) or slow (n?=?18) decline and 18 smokers without COPD. The identified peptides belong to proteins that are involved in the complement or coagulation systems or have antiprotease or metabolic functions. This research demonstrates the utility of proteomic profiling to improve the understanding of molecular mechanisms involved in cigarette smoking-related COPD by identifying plasma proteins that correlate with decline in lung function.  相似文献   
999.
《Biomarkers》2013,18(3):281-287
Background: MRproADM and MRproANP can be used as diagnostic and prognostic markers in heart failure.

Aim: The objective was to identify confounding factors for the interpretation of plasma MRproADM and MRproANP concentrations.

Methods: A total of 518 healthy volunteers with a mean age of 60.84?±?7.41 years were analyzed. We evaluated the influence of demographic factors, renal function and echocardiographic indices on the candidate peptides.

Results: Multivariate analysis revealed that age (P?<?0.001), BMI (P?<?0.001) and eGFR (P?<?0.001) were independent predictors for MRproADM concentrations in healthy subjects. The independent predictors for MRproANP were age (P?<?0.001), female gender (P?<?0.001), heart rate (P?<?0.001) and eGFR (P?=?0.039).

Conclusion: The interpretation of both peptides is multifaceted due to confounders. Knowledge of these factors will further our understanding of how these peptides behave in health and in disease.  相似文献   
1000.
《Biomarkers》2013,18(8):739-745
Isothiocyanates (ITCs) found in cruciferous vegetables have been associated with a reduced cancer risk in humans. We determined serum albumin adducts of allyl isothiocyanate (AITC), benzylisothiocyanate (BITC), phenylethylisothiocyanate (PEITC) and sulforaphane (SFN) in 85 healthy men from a dietary, randomized, controlled trial. After enzymatic digestion of albumin we determined the adducts of the ITCs with lysine (Lys) using liquid chromatography–tandem mass spectrometry. At the beginning of the study (and after 4 weeks) 4.7% (2.4%), 48.2% (35.3%), 5.9% (10.6%), and 24.7% (23.5%) of the samples were found positive for AITC-Lys, BITC-Lys, PEITC-Lys and SFN-Lys, respectively. This method enables the quantification of ITC adducts in albumin from large, prospective studies on diet and cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号