首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   917篇
  免费   101篇
  国内免费   366篇
  2024年   5篇
  2023年   14篇
  2022年   40篇
  2021年   32篇
  2020年   50篇
  2019年   58篇
  2018年   40篇
  2017年   43篇
  2016年   48篇
  2015年   41篇
  2014年   36篇
  2013年   59篇
  2012年   40篇
  2011年   52篇
  2010年   45篇
  2009年   61篇
  2008年   58篇
  2007年   77篇
  2006年   65篇
  2005年   50篇
  2004年   42篇
  2003年   48篇
  2002年   56篇
  2001年   36篇
  2000年   43篇
  1999年   19篇
  1998年   19篇
  1997年   18篇
  1996年   14篇
  1995年   9篇
  1994年   15篇
  1993年   11篇
  1992年   17篇
  1991年   14篇
  1990年   11篇
  1989年   10篇
  1988年   6篇
  1987年   10篇
  1986年   5篇
  1985年   21篇
  1984年   8篇
  1983年   5篇
  1982年   10篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1384条查询结果,搜索用时 15 毫秒
61.
In order to increase our understanding of the interaction of soil-halophyte (Salicornia brachiata) relations and phytoremediation, we investigated the aboveground biomass, carbon fixation, and nutrient composition (N, P, K, Na, Ca, and Mg) of S. brachiata using six sampling sites with varying characteristics over one growing season in intertidal marshes. Simultaneously, soil characteristics and nutrient concentrations were also estimated. There was a significant variation in soil characteristics and nutrient contents spatially (except pH) as well as temporally. Nutrient contents in aboveground biomass of S. brachiata were also significantly differed spatially (except C and Cl) as well as temporally. Aboveground biomass of S. brachiata ranged from 2.51 to 6.07 t/ha at maturity and it was positively correlated with soil electrical conductivity and available Na, whereas negatively with soil pH. The K/Na ratio in plant was below one, showing tolerance to salinity. The aboveground C fixation values ranged from 0.77 to 1.93 C t/ha at all six sampling sites. This study provides new understandings into nutrient cycling—C fixation potential of highly salt-tolerant halophyte S. brachiata growing on intertidal soils of India. S. brachiata have a potential for amelioration of the salinity due to higher Na bioaccumulation factor.  相似文献   
62.
Inter‐ and intrapopulation variability in six natural populations of the rare species Gentiana pneumonanthe was examined based on morphological and chemical data. Population size and linear morphometric parameters differed significantly among populations, but without a clear connection to habitat conditions, i. e. water supply and light availability. Leaf shape varied from ovate to lanceolate in all populations, and one population was distinctive in having the largest number of leaves of transitional shape. HPLC analyses of six secondary metabolites were performed separately for belowground parts, and aboveground vegetative and reproductive parts of individual plants (6 populations ×7 individuals ×3 plant parts, n=126) in order to examine differences at the population and individual levels. Three secoiridoids (swertiamarin (SWM), sweroside (SWZ), and gentiopicrin (GP)), one xanthone (mangiferin (MGF)), and two flavones (isoorientin (IO) and isovitexin (IV)) were detected and quantified in the analyzed samples: sweroside dominated in the aboveground reproductive part, mangiferin in the aboveground vegetative part, and gentiopicrin in the belowground part. At the population level, differences in contents of the analyzed chemicals among populations were significant only for a few metabolites. At the individual level, a pronounced organ‐dependent distribution of secondary metabolites was revealed. The results of this study contribute to a better understanding of natural variability within populations of the rare and threatened G. pneumonanthe, and provide data on the contents and within‐plant distribution of secondary metabolites, which are important as pharmacologically active compounds and may be useful for further biotechnological procedures regarding this species.  相似文献   
63.
64.
65.
Modifications of the Illinois River and associated tributaries have resulted in altered hydrologic cycles and persistent river‐floodplain connections during the growing season that frequently impede the establishment of hydrophytic vegetation and have reduced value for migratory waterfowl and other waterbirds. To help guide floodplain restoration, we compared energetic carrying capacity for waterfowl in two wetland complexes along the Illinois River under different management regimes during 2012–2015. The south pool of Chautauqua National Wildlife Refuge (CNWR) was seasonally flooded due to a partial river connection and managed for moist‐soil vegetation. Emiquon Preserve was hydrologically isolated from the Illinois River by a high‐elevation levee and managed as a semipermanently flooded emergent marsh. Semipermanent emergent marsh management at Emiquon Preserve produced 5,495 energetic use‐days (EUD)/ha for waterfowl and other waterbirds across wetland cover types and years, and seasonal moist‐soil management at CNWR produced 6,199 EUD/ha in one of 4 years. At Emiquon Preserve, the aquatic bed cover type produced 9,660 EUD/ha, followed by 5,261 EUD/ha in moist‐soil, 1,398 EUD/ha in persistent emergent, 1,185 EUD/ha in hemi‐marsh, and 12 EUD/ha in open water cover types. At CNWR, the annual grass and sedge cover type produced 7,031 EUD/ha, followed by 5,618 EUD/ha in annual broadleaf and 1,305 EUD/ha in perennial grass cover types. Restoration of floodplain wetlands in isolation from frequent flood pulses during the growing season can produce hemi‐marsh and aquatic bed vegetation communities that provide high‐quality habitat for waterfowl and which have been mostly eliminated from large river systems in the Midwest, U.S.A.  相似文献   
66.
The feral Horse (Equus caballus) is widespread across the Australian Alps. Feral horses degrade alpine and sub‐alpine ecosystems and damage habitat of a range of threatened species. Despite this, there is little published work to document the extent and severity of these impacts. This study investigated impacts of feral horses on treeless drainage lines at 186 sites across the Australian Alps. The study included sites in the Australian Capital Territory, New South Wales and Victoria. We assessed nine variables related to soil and stream stability and vegetation cover, which in turn influence ecosystem function and habitat quality. We found significant differences among horse‐occupied and horse‐free sites for all soil and stream stability variables assessed. For all variables assessed, the average score (and hence, condition) was worse in horse‐occupied areas. The sites in poorest condition were occupied by horses. Impacts from other mammalian herbivores species appeared to be minor. Management intervention is necessary if these impacts of feral horses are to be addressed.  相似文献   
67.
冻融作用对土壤理化性质及风水蚀影响研究进展   总被引:1,自引:0,他引:1  
冻融侵蚀在我国分布范围广,是主要土壤侵蚀类型之一,而冻融作用与其他营力复合进行侵蚀的分布范围比单纯的冻融侵蚀更广,所造成的危害也更大.本文基于国内外已有研究成果,总结评述了冻融作用对土壤理化性质及风蚀和水蚀影响的相关研究进展.冻融条件下,土壤水分发生运移,结构被破坏,土壤孔隙度、容重、抗剪强度、团聚体稳定性和有机质等理化性质均发生变化,其变化趋势和幅度与土壤质地、冻融程度有关.冻融作用通过改变土壤理化性质,增加土壤可蚀性,从而影响土壤风蚀和水蚀发生及过程,导致侵蚀强度增大.目前,冻融研究以室内模拟为主,与野外实际冻融过程差异较大,且由于试验条件不同,得到的结论无法统一,甚至相反.因此,通过室内模拟与野外实测相结合,加强冻融条件下土壤侵蚀机理研究是下一步的重点,这对季节性冻融区解冻期侵蚀预报和防治具有重要意义.  相似文献   
68.
69.
Coastal systems worldwide deliver vital ecosystem services, such as biodiversity, carbon sequestration, and coastal protection. Effectivity of these ecosystem services increases when vegetation is present. Understanding the mechanisms behind vegetation establishment in bio‐geomorphic systems is necessary to understand their ability to recover after erosive events and potential adaptations to climate change. In this study, we examined how seed availability affects vegetation establishment in the salt marsh–intertidal flat transition zone: the area with capacity for lateral marsh expansion. This requires vegetation establishment; therefore, seed availability is essential. In a 6‐month field experiment, we simulated a before and after winter seed dispersal at two locations, the salt‐marsh vegetation edge and the intertidal flat, and studied seed retention, the seed bank, and the seed viability of three pioneer marsh species: Salicornia procumbens, Aster tripolium, and Spartina anglica. During winter storm conditions, all supplied seeds eroded away with the sediment surface layer. After winter, supplied seeds from all three species were retained, mostly at the surface while 9% was bioturbated downwards. In the natural seed bank, A. tripolium and S. anglica were practically absent while S. procumbens occurred more frequently. The viability of S. procumbens seeds was highest at the surface, between 80% and 90%. The viability quickly decreased with depth, although viable S. procumbens seeds occurred up to 15 cm depth. Only when seeds were supplied after winter, many S. procumbens and some S. anglica individuals did establish successfully in the transition zone. Viable seed availability formed a vegetation establishment threshold, even with a local seed source. Our results suggest that, although boundary conditions such as elevation, inundation, and weather conditions were appropriate for vegetation establishment in spring, the soil surface in winter can be so dynamic that it limits lateral marsh expansion. These insights can be used for designing effective nature‐based coastal protection.  相似文献   
70.
Lin C W  Tu S H  Huang J J  Chen Y B 《农业工程》2007,27(6):2191-2198
Effect of using plant hedgerows on controlling soil and water losses has received wide recognition and this technology has been applied in many areas in the world. Yet, studies on the effect of using plant hedgerows on soil fertility on sloping lands are rare. Carrying out an eight-year fixed field experiment, the authors investigated the effect of two different hedgerows against the control treatment on soil fertility. Results showed that clay particles tended to accumulate in front of the plant hedgerows and began to erode downward below the hedgerows along the contour lines across the field. Distribution of soil organic matter and all plant nutrients except potassium (K) showed the same pattern as the clay particles. Potassium, however, was evenly distributed in the field without any noticeable influence from the hedgerows. Since the fixed experiment started, soil phosphorus (P) kept accumulating, while soil organic matter and K were in depletion. The results accordingly suggested better nutrient management practices on the sloping lands by using properly reduced rates of P and increased rates of farm manure and K. Taking the sloping field as a whole, special attention in nutrient management should be given to the soil strips —the portions below the plant hedgerows suffering from more serious soil erosion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号