首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   916篇
  免费   101篇
  国内免费   365篇
  2024年   5篇
  2023年   14篇
  2022年   39篇
  2021年   32篇
  2020年   49篇
  2019年   58篇
  2018年   40篇
  2017年   43篇
  2016年   48篇
  2015年   41篇
  2014年   36篇
  2013年   59篇
  2012年   40篇
  2011年   52篇
  2010年   45篇
  2009年   61篇
  2008年   58篇
  2007年   77篇
  2006年   65篇
  2005年   50篇
  2004年   42篇
  2003年   48篇
  2002年   56篇
  2001年   36篇
  2000年   43篇
  1999年   19篇
  1998年   19篇
  1997年   18篇
  1996年   14篇
  1995年   9篇
  1994年   15篇
  1993年   11篇
  1992年   17篇
  1991年   14篇
  1990年   11篇
  1989年   10篇
  1988年   6篇
  1987年   10篇
  1986年   5篇
  1985年   21篇
  1984年   8篇
  1983年   5篇
  1982年   10篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1382条查询结果,搜索用时 15 毫秒
111.
Ana Rey 《Global Change Biology》2015,21(5):1752-1761
Widespread recognition of the importance of soil CO2 efflux as a major source of CO2 to the atmosphere has led to active research. A large soil respiration database and recent reviews have compiled data, methods, and current challenges. This study highlights some deficiencies for a proper understanding of soil CO2 efflux focusing on processes of soil CO2 production and transport that have not received enough attention in the current soil respiration literature. It has mostly been assumed that soil CO2 efflux is the result of biological processes (i.e. soil respiration), but recent studies demonstrate that pedochemical and geological processes, such as geothermal and volcanic CO2 degassing, are potentially important in some areas. Besides the microbial decomposition of litter, solar radiation is responsible for photodegradation or photochemical degradation of litter. Diffusion is considered to be the main mechanism of CO2 transport in the soil, but changes in atmospheric pressure and thermal convection may also be important mechanisms driving soil CO2 efflux greater than diffusion under certain conditions. Lateral fluxes of carbon as dissolved organic and inorganic carbon occur and may cause an underestimation of soil CO2 efflux. Traditionally soil CO2 efflux has been measured with accumulation chambers assuming that the main transport mechanism is diffusion. New techniques are available such as improved automated chambers, CO2 concentration profiles and isotopic techniques that may help to elucidate the sources of carbon from soils. We need to develop specific and standardized methods for different CO2 sources to quantify this flux on a global scale. Biogeochemical models should include biological and non‐biological CO2 production processes before we can predict the response of soil CO2 efflux to climate change. Improving our understanding of the processes involved in soil CO2 efflux should be a research priority given the importance of this flux in the global carbon budget.  相似文献   
112.
113.
114.
Norisoboldine (NOR), the primary isoquinoline alkaloid constituent of the root of Lindera aggregata, has previously been demonstrated to attenuate osteoclast (OC) differentiation. Accumulative evidence has shown that aryl hydrocarbon receptor (AhR) plays an important role in regulating the differentiation of various cells, and multiple isoquinoline alkaloids can modulate AhR. In the present study, we explored the role of NOR in the AhR signaling pathway. These data showed that the combination of AhR antagonist resveratrol (Res) or α-naphthoflavone (α-NF) nearly reversed the inhibition of OC differentiation through NOR. NOR could stably bind to AhR, up-regulate the nuclear translocation of AhR, and enhance the accumulation of the AhR-ARNT complex, AhR-mediated reporter gene activity and CYP1A1 expression in RAW 264.7 cells, suggesting that NOR might be an agonist of AhR. Moreover, NOR inhibited the nuclear translocation of NF-κB-p65, resulting in the evident accumulation of the AhR-NF-κB-p65 complex, which could be markedly inhibited through either Res or α-NF. Although NOR only slightly affected the expression of HIF-1α, NOR markedly reduced VEGF mRNA expression and ARNT-HIF-1α complex accumulation. In vivo studies indicated that NOR decreased the number of OCs and ameliorated the bone erosion in the joints of rats with collagen-induced arthritis, accompanied by the up-regulation of CYP1A1 and the down-regulation of VEGF mRNA expression in the synovium of rats. A combination of α-NF nearly completely reversed the effects of NOR. In conclusion, NOR attenuated OC differentiation and bone erosion through the activation of AhR and the subsequent inhibition of both NF-κB and HIF pathways.  相似文献   
115.
116.
Disruption of telomere maintenance pathways leads to accelerated entry into cellular senescence, a stable proliferative arrest that promotes aging‐associated disorders in some mammals. The budding yeast CST complex, comprising Cdc13, Stn1, and Ctc1, is critical for telomere replication, length regulation, and end protection. Although mammalian homologues of CST have been identified recently, their role and function for telomere maintenance in normal somatic human cells are still incompletely understood. Here, we characterize the function of human Stn1 in cultured human fibroblasts and demonstrate its critical role in telomere replication, length regulation, and function. In the absence of high telomerase activity, shRNA‐mediated knockdown of hStn1 resulted in aberrant and fragile telomeric structures, stochastic telomere attrition, increased telomere erosion rates, telomere dysfunction, and consequently accelerated entry into cellular senescence. Oxidative stress augmented the defects caused by Stn1 knockdown leading to almost immediate cessation of cell proliferation. In contrast, overexpression of hTERT suppressed some of the defects caused by hStn1 knockdown suggesting that telomerase can partially compensate for hStn1 loss. Our findings reveal a critical role for human Stn1 in telomere length maintenance and function, supporting the model that efficient replication of telomeric repeats is critical for long‐term viability of normal somatic mammalian cells.  相似文献   
117.
118.
We investigated Spartina alterniflora invasions, their relationship with shoreline dynamics and effects on crab communities in the Yellow River estuary, China, where shoreline dynamics have been accelerated due to human-mediated estuarine sediment deposition and sea-level rise. We determined the distribution of Spartina with extensive ground surveys, and quantified shoreline dynamics between 2001 and 2009 by interpreting satellite images. We used pitfall traps to sample crab populations in Spartina-invaded habitats and non-invaded mudflats in 2009 and 2010. Large areas (>0.5 km2) of Spartina plants were found at three locations in the estuary. The seaward limit of Spartina at each location generally coincided with the present shoreline, regardless of historical shoreline advance or retreat. Crab communities in Spartina-invaded habitats significantly differed from those in non-invaded habitats. The total number and biomass of crabs caught per trap were much higher in Spartina-invaded habitats than in non-invaded habitats, however, species richness and Shannon diversity were much lower. These results suggest that Spartina invasions are likely to keep pace with shoreline dynamics accelerated by global change and have significant ecological consequences for crab communities. These issues should be taken into account to improve the use and management of Spartina, especially in rapidly accreting estuaries with large-area mudflats that are important habitats but prone to Spartina invasions.  相似文献   
119.
Georges A  Fouillet P  Pétillon J 《ZooKeys》2011,(100):407-419
As a result of an invasion by the native grass Elymus athericus (Link) Kerguélen (Poaceae) in the last 10 years, a major change in vegetation cover has occurred in salt marshes of the Mont Saint-Michel bay, Western France. The impact of such an invasion on carabid assemblages, a dominant group of terrestrial arthropods in these habitats and containing several stenotopic species, is investigated here. In our study site, carabid data are available from 1983 and 1984, allowing a comparison of species distribution ranges in salt marshes before (1983-1984) and after (2002) the Elymus athericus invasion. A total of 16,867 adults belonging to 40 species were caught. By considering the presence-absence of species shared between studies, we show that the invasion by Elymus athericus promoted the progression of non-coastal species (mainly Pterostichus s.l. spp.). This did however not interfere with resident species distributions, finally resulting in higher carabid species richness in the entire area. The species composition and abundances of carabid assemblages were also compared between natural and invaded stations in 2002. The main result is that abundances of some halophilic species decreased in one invaded plot (in case of Pogonus chalceus (Marsham 1802)) whereas the opposite pattern was observed for other species (e.g., Bembidion minimum (Fabricius 1792)). Invaded habitats were characterized by lower percentages of halophilic species and higher total species richness.  相似文献   
120.
Functional redundancy in bacterial communities is expected to allow microbial assemblages to survive perturbation by allowing continuity in function despite compositional changes in communities. Recent evidence suggests, however, that microbial communities change both composition and function as a result of disturbance. We present evidence for a third response: resistance. We examined microbial community response to perturbation caused by nutrient enrichment in salt marsh sediments using deep pyrosequencing of 16S rRNA and functional gene microarrays targeting the nirS gene. Composition of the microbial community, as demonstrated by both genes, was unaffected by significant variations in external nutrient supply in our sampling locations, despite demonstrable and diverse nutrient-induced changes in many aspects of marsh ecology. The lack of response to external forcing demonstrates a remarkable uncoupling between microbial composition and ecosystem-level biogeochemical processes and suggests that sediment microbial communities are able to resist some forms of perturbation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号