首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4900篇
  免费   48篇
  国内免费   15篇
  4963篇
  2024年   55篇
  2023年   350篇
  2022年   227篇
  2021年   272篇
  2020年   355篇
  2019年   452篇
  2018年   424篇
  2017年   303篇
  2016年   365篇
  2015年   201篇
  2014年   458篇
  2013年   923篇
  2012年   48篇
  2011年   52篇
  2010年   42篇
  2009年   20篇
  2008年   28篇
  2007年   25篇
  2006年   7篇
  2005年   60篇
  2004年   37篇
  2003年   31篇
  2002年   24篇
  2001年   10篇
  2000年   11篇
  1999年   9篇
  1998年   14篇
  1997年   9篇
  1996年   1篇
  1995年   1篇
  1994年   7篇
  1993年   4篇
  1992年   4篇
  1989年   1篇
  1987年   1篇
  1986年   3篇
  1985年   13篇
  1984年   20篇
  1983年   22篇
  1982年   11篇
  1981年   9篇
  1980年   12篇
  1979年   10篇
  1978年   7篇
  1977年   9篇
  1976年   4篇
  1975年   4篇
  1974年   6篇
  1973年   2篇
排序方式: 共有4963条查询结果,搜索用时 11 毫秒
71.
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus–host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes.  相似文献   
72.
分子系统学原理及其在林木上的应用   总被引:2,自引:0,他引:2  
史全良  诸葛强  黄敏仁 《生命科学》2001,13(2):89-92,81
综述了林木分子系统学的是新研究进展,分析了现代分子生物学方法的不断改进给林木系统学研究带来的革命性进展,阐述了RAPD,cpDNA,rDNA等在林木分子系统学研究中的应用及取得的成果,评述了各种不同分子标记的适用范围以及对相关基因进化规律的认识,同时提出了这些分子标记在分子系统学研究中应注意的一些问题。  相似文献   
73.
Phytoremediation is a promising approach for the cleanup of soil contaminated with petroleum hydrocarbons. This study aimed to develop plant-bacterial synergism for the successful remediation of crude oil-contaminated soil. A consortia of three endophytic bacteria was augmented to two grasses, Leptochloa fusca and Brachiaria mutica, grown in oil-contaminated soil (46.8 g oil kg?1 soil) in the vicinity of an oil exploration and production company. Endophytes augmentation improved plant growth, crude oil degradation, and soil health. Maximum oil degradation (80%) was achieved with B. mutica plants augmented with the endophytes and it was significantly (P < 0.05) higher than the use of plants or bacteria individually. Moreover, endophytes showed more persistence, the abundance and expression of alkB gene in the rhizosphere as well as in the endosphere of the tested plants than in unvegetated soil. A positive relationship (r = 0.70) observed between gene expression and crude oil reduction indicates that catabolic gene expression is important for hydrocarbon mineralization. This investigation showed that the use of endophytes with appropriate plant is an effective strategy for the cleanup of oil-contaminated soil under field conditions.  相似文献   
74.
Radiation damage in reactor materials caused by the collision of the fast neutrons has a great impact on the reliability and safety of nuclear reactors. The element vanadium has attracted interest in many fields due to its advantageous properties in alloys. Thus, molecular dynamics simulation (MD) and first-principles calculation have been executed here to explore the radiation-resistant properties of five materials adding a layer in the bulk (pure iron and four types of Fe–V alloys containing 10%-40% V). The following results were inferred from these simulations. Firstly, the number of Frenkel pairs (FPs) at the stable quenching stage in the bulk decreases when the Fe–V alloy is added as an anti-radiation layer to the bulk. These benefits are evident for the Fe80V20 and alloy layers with more vanadium. The main reason is that the Fe–V binding energy is greater than the Fe-Fe binding energy, which can make the Primary Knock-On atom (PKA) lose more energy at the Fe–V alloy layer. Secondly, the average value of point-defect, cluster and defect clustered fractions in the bulk of Fe–V alloy is smaller than that in the pure iron at the stable quenching stage, especially for the Fe80V20 alloy.  相似文献   
75.
ABSTRACT

In 2016, the Gerontological Society of America (GSA) developed a research focus on the benefits and potential risks associated with pets among older adults. With the goal of developing a roadmap for human–animal interaction (HAI) research in older people residing in both the community and institutions, GSA convened a workshop of international experts and policy-makers in the fields of aging and HAI. The status of current knowledge was shared on the success factors for healthy aging and the potential challenges (GSA, 2016). Participants considered what roles pets might play in the lives of older adults and their potential to mitigate loneliness, social isolation, and depression, and to enhance mobility and cognitive function. Existing research was shared to provide insights into the ways in which pets can impact older adults and their caregivers and to identify where further research is needed. This paper introduces a series of papers from that meeting, with some additional papers from meeting attendees to expand on the topics covered and provide key perspectives and gaps in information needed, as a foundation for those considering research into this topic. Although HAI/Animal-Assistant Intervention (AAI) research is in its infancy, there is some evidence that pet ownership or animal interaction can have major benefits for many older adults. At the same time, there are some risks to both the pet and the older adult that need to be addressed. Innovative approaches to both AAIs and the ways to overcome challenges are presented in this themed issue of Anthrozoös. Our hope is that the findings from these reviews and reports will stimulate additional work in this area.  相似文献   
76.
An effort has been made for the first time in Asia's largest brackish water lagoon, Chilika, to investigate the spatio-temporal variability in primary productivity (PP), bacterial productivity (BP), bacterial abundance (BA), bacterial respiration (BR) and bacterial growth efficiency (BGE) in relation to partial pressure of CO2 (pCO2) and CO2 air–water flux and the resultant trophic switchover. Annually, PP ranged between 24 and 376 µg C L?1 d?1 with significantly low values throughout the monsoon (MN), caused by light limitation due to inputs of riverine suspended matter. On the contrary, BP and BR ranged from 11.5 to 186.3 µg C L?1 d?1 and from 14.1 to 389.4 µg C L?1 d?1, respectively, with exceptionally higher values during MN. A wide spatial and temporal variation in the lagoon trophic status was apparent from BP/PP (0.05–6.4) and PP/BR (0.10–18.2) ratios. The seasonal shift in net pelagic production from autotrophy to heterotrophy due to terrestrial organic matter inputs via rivers, enhanced the bacterial metabolism during the MN, as evident from the high pCO2 (10,134 µatm) and CO2 air–water flux (714 mm m?2 d?1). Large variability in BGE and BP/PP ratios especially during MN led to high bacteria-mediated carbon fluxes which was evident from significantly high bacterial carbon demand (BCD >100% of PP) during this season. This suggested that the net amount of organic carbon (either dissolved or particulate form) synthesized by primary producers in the lagoon was not sufficient to satisfy the bacterial carbon requirements. Lagoon sustained low to moderate autotrophic–heterotrophic coupling with annual mean BCD of 231% relative to the primary production, which depicted that bacterioplankton are the mainstay of the lagoon biogeochemical cycles and principal players that bring changes in trophic status. Study disclosed that the high CO2 supersaturation and oxygen undersaturation during MN was attributed to the increased heterotrophic respiration (in excess of PP) fuelled by allochthonous organic matter. On a spatial scale, lagoon sectors such as south sector, central sector and outer channel recorded “net autotrophic,” while the northern sector showed “net heterotrophic” throughout the study period.  相似文献   
77.
Quantitative structure–activity relationship (QSAR) analysis uses structural, quantum chemical, and physicochemical features calculated from molecular geometry as explanatory variables predicting physiological activity. Recently, deep learning based on advanced artificial neural networks has demonstrated excellent performance in the discipline of QSAR research. While it has properties of feature representation learning that directly calculate feature values from molecular structure, the use of this potential function is limited in QSAR modeling. The present study applied this function of feature representation learning to QSAR analysis by incorporating 360° images of molecular conformations into deep learning. Accordingly, I successfully constructed a highly versatile identification model for chemical compounds that induce mitochondrial membrane potential disruption with the external validation area under the receiver operating characteristic curve of ≥0.9.  相似文献   
78.
Lung cancer is a serious disease that threatens an affected individual's life. Its pathogenesis has not yet to be fully described, thereby impeding the development of effective treatments and preventive measures. “Cancer driver” theory considers that tumor initiation can be associated with a number of specific mutations in genes called cancer driver genes. Four omics levels, namely, (1) methylation, (2) microRNA, (3) mutation, and (4) mRNA levels, are utilized to cluster cancer driver genes. In this study, the known dysfunctional genes of these four levels were used to identify novel driver genes of lung adenocarcinoma, a subtype of lung cancer. These genes could contribute to the initiation and progression of lung adenocarcinoma in at least two levels. First, random walk with restart algorithm was performed on a protein–protein interaction (PPI) network constructed with PPI information in STRING by using known dysfunctional genes as seed nodes for each level, thereby yielding four groups of possible genes. Second, these genes were further evaluated in a test strategy to exclude false positives and select the most important ones. Finally, after conducting an intersection operation in any two groups of genes, we obtained several inferred driver genes that contributed to the initiation of lung adenocarcinoma in at least two omics levels. Several genes from these groups could be confirmed according to recently published studies. The inferred genes reported in this study were also different from those described in a previous study, suggesting that they can be used as essential supplementary data for investigations on the initiation of lung adenocarcinoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.  相似文献   
79.
Mercury (Hg) exposure remains a major public health concern due to its widespread distribution in the environment. Organic mercurials, such as MeHg, have been extensively investigated especially because of their congenital effects. In this context, studies on the molecular mechanism of MeHg-induced neurotoxicity are pivotal to the understanding of its toxic effects and the development of preventive measures. Post-translational modifications (PTMs) of proteins, such as phosphorylation, ubiquitination, and acetylation are essential for the proper function of proteins and play important roles in the regulation of cellular homeostasis. The rapid and transient nature of many PTMs allows efficient signal transduction in response to stress. This review summarizes the current knowledge of PTMs in MeHg-induced neurotoxicity, including the most commonly PTMs, as well as PTMs induced by oxidative stress and PTMs of antioxidant proteins. Though PTMs represent an important molecular mechanism for maintaining cellular homeostasis and are involved in the neurotoxic effects of MeHg, we are far from understanding the complete picture on their role, and further research is warranted to increase our knowledge of PTMs in MeHg-induced neurotoxicity.  相似文献   
80.
The interaction studies of CuII nalidixic acid–DACH chemotherapeutic drug entity, [C36H50N8O6Cu] with serum albumin proteins, viz., human serum albumin (HSA) and bovine serum albumin (BSA) employing UV–vis, fluorescence, CD, FTIR and molecular docking techniques have been carried out. Complex [C36H50N8O6Cu] demonstrated strong binding affinity towards serum albumin proteins via hydrophobic contacts with binding constants, K?=?3.18?×?105 and 7.44?×?104 M–1 for HSA and BSA, respectively implicating a higher binding affinity for HSA. The thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were also calculated and the interaction of complex [C36H50N8O6Cu] with HSA and BSA was found to be enthalpy and entropy favoured, nevertheless, complex [C36H50N8O6Cu] demonstrated higher binding affinity towards HSA than BSA evidenced from its higher binding constant values. Time resolved fluorescence spectroscopy (TRFS) was carried out to validate the static quenching mechanism of HSA/BSA fluorescence. The collaborative results of spectroscopic studies indicated that the microenvironment and the conformation of HSA and BSA (α–helix) were significantly perturbed upon interaction with complex [C36H50N8O6Cu]. Hirshfeld surfaces analysis and fingerprint plots revealed various intermolecular interactions viz., N–H····O, O–H····O and C–H····O linkages in a 2–dimensional framework that provide crucial information about the supramolecular architectures in the complex. Molecular docking studies were carried out to ascertain the preferential binding mode and affinity of complex [C36H50N8O6Cu] at the target site of HSA and BSA. Furthermore, only for Transmission electroscopy microscopy micrographs of HSA and BSA in presence of complex [C36H50N8O6Cu] revealed major protein morphological transitions and aggregation which validates efficient delivery of complex by serum proteins to the target site.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号