首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   3篇
  国内免费   7篇
  92篇
  2023年   2篇
  2022年   1篇
  2019年   4篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   8篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1987年   4篇
  1984年   5篇
  1983年   1篇
  1980年   1篇
排序方式: 共有92条查询结果,搜索用时 0 毫秒
51.
52.
The growth rate ofGracilaria gracilis maintained in tanks at an abalone farm near Port Elizabeth, South Africa, was examined under various tank conditions and NH4-N pulse frequencies and concentrations. This was accompanied by analyses of the components of the internal nitrogen pool. A maximum growth rate of ca. 35% wk–1 was obtained at 1200 M NH4-N. The alga was able to grow at non-nitrogen limited rates using only internal stored nitrogen to sustain growth for one week before the growth rate decreased to ca. 17% per week. NH4-N pulse frequency did not affect growth rate but one pulse per week led to a marked decrease in total-N, protein, phycoerythrin and chlorophyll-a content. An increase in pulse frequency to two pulses per week doubled the protein content from 2.351 ± 0.143 to 4.453 ± 0.090% (per unit dry mass). Carbohydrate content was inversely related to nitrogen storage. The growth rate in fouled tanks was always lower than in clean tanks. It seems likely that seaweeds and diatoms colonising the tank sides reduced light reflected off the inside of a tank, thereby reducing the growth rate.  相似文献   
53.
Data are presented on temperature responses, based onin vitro growth performance, of eight species of colloid-producing red algae; these include the five most important commercial species of agarophytes in South America. The temperature optima do not conform strictly to geographic distribution, and intolerance to high temperature is not the factor that controls the spreading of temperate species ofGracilaria to warmer areas. WithinPterocladia capillacea (Gmelin) Bornet et Thuret, populations from two distinct localities had different responses to temperature optima. Data suggest that the disjunct distribution of this species in the American Atlantic is due to its poor performance at temperatures above 26 °C. The fastest maximum growth rate was observed inHypnea cornuta (Lamouroux) J. Agardh (doubling time 2.8 d), and the slowest inP. capillacea from Cabo Frio (doubling time 50.0 d). All the species studied, including the valuable Chilean and Argentinean species ofGracilaria, could tolerate the temperature regimes of the Brazilian waters.  相似文献   
54.
Two species of giant kelp inhabit the coast of Chile: Macrocystis integrifolia and M. pyrifera, representing important economic resources. As part of our efforts to domesticate these kelps for mariculture, and to obtain superior cultivars, we studied their biological relationship. Hybridization experiments with clonal gametophyte cultures showed reciprocal cross-fertility and produced fertile hybrid sporophytes with intermediate morphological characters. This hybridization potential in the laboratory contrasts with the persistence of two morphologically well-defined sister taxa in natural habitats on the Pacific coast of South America. We conclude that M. integrifolia and M. pyrifera are conspecific and speculate that unknown mechanisms support the co-existence of two morphologically distinct taxa on the subspecific level.  相似文献   
55.
Marine aquaculture is expanding into deeper offshore environments in response to growing consumer demand for seafood, improved technology, and limited potential to increase wild fisheries catches. Sustainable development of aquaculture will require quantification and minimization of its impacts on other ocean‐based activities and the environment through scientifically informed spatial planning. However, the scientific literature currently provides limited direct guidance for such planning. Here, we employ an ecological lens and synthesize a broad multidisciplinary literature to provide insight into the interactions between offshore aquaculture and the surrounding environment across a spectrum of spatial scales. While important information gaps remain, we find that there is sufficient research for informed decisions about the effects of aquaculture siting to achieve a sustainable offshore aquaculture industry that complements other uses of the marine environment.  相似文献   
56.
Seaweed biofilters have proven their usefulness in the treatment of fishpond effluents. However, their performance poses a dilemma: TAN (Total Ammonia N) uptake rate – and with it seaweed yield and protein content – is inversely proportional to TAN uptake efficiency. The ideal for a seaweed biofilter performance would be a high uptake rate together with high uptake efficiency. The novel three-stage seaweed biofilter design described here has solved this dilemma. The design used the finding that the performance of seaweed ponds depended on the flux of TAN through them, and that therefore effluents with reduced TAN concentration could provide the seaweed with a high TAN flux if the water flow increased proportionally. Effluents from a seabream fishpond were passed through a series of three successively smaller (25, 12.5 and 6.25 m2, respectively) air-agitated Ulva lactuca ponds. The diminished inflow TAN concentrations to the second and third ponds of the biofilter system were compensated for by the increased water exchange rates, inversely proportional to their sizes. The biofilter performance was evaluated under several TAN loads. TAN was efficiently removed (85–90%), at a high areal rate (up to 2.9 g N m-2 d-1) while producing high protein U. lactuca (up to 44% dw) in all three stages, although with mediocre yields (up to 189 g fresh m-2 d-1). Performance of each seaweed biofilter pond correlated not with TAN concentration, but with areal TAN loads. The novel three-stage design provides significant functional and economic improvements in seaweed biofiltration of intensive fishpond water.  相似文献   
57.
Recreational and other human activities degrade coral reefs worldwide to a point where efficient restoration techniques are needed. Here we tested several strategies for gardening denuded reefs. The gardening concept consists of in situ or ex situ mariculture of coral recruits, followed by their transplantation into degraded reef sites. In situ nurseries were established in Eilat's (Northern Red Sea) shallow waters, sheltering three types of coral materials taken from the branching species Stylophora pistillata (small colonies, branch fragments, and spat) that were monitored for up to two years. Pruning more than 10% of donor colonies' branches increased mortality, and surviving colonies displayed reduced reproductive activity. Maricultured isolated branches, however, exceeded donor colony life span and reproductive activity and added 0.5–45% skeletal mass per year. Forty‐four percent of the small colonies survived after 1.5‐year mariculture, revealing average yearly growth of 75 ± 32%. Three months ex situ maintenance of coral spat (sexual recruits) prior to the in situ nursery phase increased survivorship. Within the next 1.5 years, they developed into colonies of 3–4 cm diameter. Nursery periods of 2 years, 4–5 years, and more than> 5 years have been estimated for small colonies, spat, and isolated branches, respectively. These and other results, including the possible use of nubbins (minute fragments the size of a single or few polyps), are discussed, revealing benefits and drawbacks for each material. In situ coral mariculture is an improved practice to the common but potentially harmful protocol of direct coral transplantation. It is suggested that reef gardening may be used as a key management tool in conservation and restoration of denuded reef areas. The gardening concept may be applicable for coral reefs worldwide through site‐specific considerations and the use of different local coral species.  相似文献   
58.
Twenty branches of Kappaphycus alvarezii (Doty) Doty ex P. Silva produced in unialgal culture and weighing about 3 g each were transferred into the sea monthly from October 1995 to October 1996 at Ubatuba Bay, São Paulo State, Brazil (23°26.9′S, 45°0.3′W), an area with mean monthly seawater temperature from 20.3 to 28.5°C (extremes: 17.0–31.0°C). All plants were harvested after the second month and a new series of growth experiments was performed using cuttings weighing from 100 to 150 g. The cultivation experiments were carried out using a floating system. Daily growth rates were calculated based on monthly weight measurements of each individual. Small branches produced in vitro showed high survival rates when introduced into the sea during all seasons. Growth rates observed for the transplanted branches during the first and second months in the sea were higher (6.5–10.7% day‐1) than for subsequent cuttings produced in the sea (4.5–8.2% day‐1). The latter values are in the range reported for other regions. Seasonal variation of growth rates was clearly related to seawater temperature. These results show that the commercial cultivation of K. alvarezii is technically feasible at Ubatuba Bay using a floating raft culture method.  相似文献   
59.
The marine diatom Thalassiosira pseudonana (Hustedt, clone 3H) Hasle and Heimdal was cultured under three different light regimes: 100 μmol photon · m?2· s?1 on 12:12 h light : dark (L:D) cycles; 50 μmol photon · m?2· s?2 on 24:0 h L:D; and 100 μmol photon · m?2· s?1 on 24:0 h L:D. It was harvested during logarithmic and stationary phases for analysis of biochemical composition. Across the different light regimes, protein (as % of organic weight) was highest in cells during logarithmic phase, whereas carbohydrate and lipid were highest during stationary phase. Carbohydrate concentrations were most affected by the different light regimes; cells grown under 12:12 h L:D contained 37–44% of the carbohydrate of cells grown under 24:0 h L:D. Cells in logarithmic phase had high proportions of polar lipids (79 to 89% of total lipid) and low triacylglycerol (≤10% of total lipid). Cells in stationary phase contained less polar lipid (48 to 57% of total lipid) and more triacylglycerol (22 to 45% of total lipid). The fatty acid composition of logarithmic phase cells grown under 24:0 h L:D were similar, but the 100 μmol photon · m?2· s?1 (12:12 h L:D) cells at the same stage contained a higher proportion of polyunsaturated fatty acids (PUFAs) and a lower proportion of saturated and monounsaturated fatty acids due to different levels of 16:0, 16:1(n-7), 16:4(n-1), 18:4(n-3), and 20:5(n-3). With the onset of stationary phase, cells grown at 100 μmol photon · m?2· s?1 (both 12:12 and 24:0 h L:D) increased in proportions of saturated and monounsaturated fatty adds and decreased in PUFAs. Concentrations (% organic or dry weight) of 14:0, 16:0, 16:1(n-7), 20:5(n-3), and 22:6(n-3) increased in cells of all cultures during stationary phase. The amino acid compositions of cells were similar irrespective of harvest stage and light regime. For mariculture, the recommended light regime for culturing T. pseudonana will depend on the nutritional requirements of the animal to which the alga is fed. For rapidly growing bivalve mollusc larvae, stationary-phase cultures grown under a 24:0 h L:D regime may provide more energy by virtue of their higher percentage of carbohydrate and high proportions and concentrations of energy-rich saturated fatty acids.  相似文献   
60.
The biochemical composition of four strains of microalgae from the class Eustigmatophyceae was determined to assess their usefulness as live feeds for mariculture and to establish characteristic features for use in chemotaxonomic studies. We studied Nannochloropsis salina (strain CS-190) from Scotland, two strains of Nannochloropsis oculata (CS-179 and CS-216) from Japan, and an unnamed eustigmatophyte (CS-246) isolated from Queensland waters that appears to be closely related to N. oculata. Gross compositional features were similar: total carbohydrate ranged from 5.2% (N. oculata CS-179) to 8.9% (N. salina) of cell dry weight. Polysaccharide comprised 74% (N. oculata CS-179) to 88% (CS-246) of this total. Glucose was the principal polysaccharide sugar (45.2–66.2% of total sugars). Other sugars included fucose, galactose, mannose, rhamnose, ribose, and xylose (2.0–14.0%). Arabinose was a minor constituent in all species (0.6–1.7%). Protein varied from 17.8% (N. salina) to 22.1% (N. oculata CS-216) of the cell dry weight. The major amino acids were arginine, glutamate, and asparatate (7.2–10.4% of total amino acids), with methionine, cystine, histidine, tryptophan, hydroxy-proline, ornithine, and γ-aminobutyric acid much less abundant (0.03–2.6%). Lipid content ranged from 8.2% (N. oculata CS-216) to 16.9% (N. salina) of cell dry weight, the latter value reflecting enhanced concentrations of triacylglycerols in N. salina. The major fatty acids were palmitic acid (16:0), palmitoleic acid [16:1(n-7)], and eicosapentaenoic acid [20:5(n-3)] with lesser amounts of lauric acid (14:0), linoleic acid [18:2(n-6)], and others. The sterols consisted almost entirely of cholesterol, which is an essential constituent of crustacean diets. Chlorophyll a ranged from 0.6% (N. oculata CS-216) to 1.7% (N. oculata CS-179 and N. salina) of cell dry weight. Chlorophylls b and c were not detected. All strains contained a characteristic pattern of carotenoid pigments, which included violaxanthin, β-carotene, zeaxanthin, and a pigment tentatively identified as vaucheriaxanthin-ester. The distinctive pigment and lipid compositional data can be used as chemotaxonomic markers for Nannochloropsis and for assigning microalgae to the class Eustigmatophyceae. Nannochloropsis oculata is widely used as an algal feed in mariculture, and based on the similarity of the biochemical data, both N. salina and the unnamed tropical species should also prove to be nutritionally valuable live algal feedstocks. Feeding trials will be needed to confirm this.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号