首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1233篇
  免费   55篇
  国内免费   68篇
  1356篇
  2023年   5篇
  2022年   11篇
  2021年   16篇
  2020年   13篇
  2019年   18篇
  2018年   19篇
  2017年   19篇
  2016年   26篇
  2015年   30篇
  2014年   35篇
  2013年   87篇
  2012年   27篇
  2011年   52篇
  2010年   34篇
  2009年   53篇
  2008年   53篇
  2007年   64篇
  2006年   56篇
  2005年   57篇
  2004年   52篇
  2003年   69篇
  2002年   33篇
  2001年   40篇
  2000年   26篇
  1999年   32篇
  1998年   30篇
  1997年   39篇
  1996年   34篇
  1995年   49篇
  1994年   46篇
  1993年   21篇
  1992年   23篇
  1991年   19篇
  1990年   13篇
  1989年   11篇
  1988年   23篇
  1987年   15篇
  1986年   14篇
  1985年   20篇
  1984年   12篇
  1983年   10篇
  1982年   16篇
  1981年   8篇
  1980年   12篇
  1979年   3篇
  1978年   7篇
  1977年   3篇
  1976年   1篇
排序方式: 共有1356条查询结果,搜索用时 0 毫秒
351.
Peanut agglutinin lectin (PNA) binds the Thomsen-Friedenreich (TF) oncofetal carbohydrate antigen (galactose beta1-3N-acetylgalactosamine alpha) that shows increased expression in colon cancer, adenomas, and inflammatory bowel disease. PNA is mitogenic, both in vitro and in vivo, for colon epithelial cells. In these cells, PNA binds predominantly to cell-surface TF antigen expressed by high molecular weight isoforms of the transmembrane glycoprotein CD44 that are generated in inflamed and neoplastic colonic epithelia by altered RNA splicing. Our aim was to identify the signaling mechanism underlying the proliferative response to PNA. This was investigated in HT29, T84, and Caco2 colon cancer cells. Parallel lectin and immunoblotting of PNA affinity-purified HT29 cell membrane extracts showed PNA binding to high molecular weight CD44v6 isoforms. Within 5 min, PNA (25 microg/mL) caused a 6-fold increase in phosphorylation of hepatocyte growth factor receptor c-Met, known to co-associate with CD44v6. This was followed by the downstream activation of p44/p42 mitogen-activated protein kinase (MAPK) over 15-20 min. The presence of 100 microg/mL asialofetuin, a TF antigen-expressing glycoprotein, blocked both PNA-induced c-Met and MAPK activation. A similar PNA-induced c-Met and MAPK phosphorylation was also seen in T84 cells that express CD44v6 but not in Caco2 cells that lack CD44v6. PNA-induced cell proliferation was completely blocked by 1 microM PD98059, an inhibitor of MAPK activation (p < 0.0001). The expression of TF antigen by CD44 isoforms in colonic epithelial cells allows lectin-induced mitogenesis that is mediated by phosphorylation of c-Met and MAPK. It provides a mechanism by which dietary, microbial, or endogenous galactose-binding lectins could affect epithelial proliferation in the cancerous and precancerous colon.  相似文献   
352.
Heat shock proteins (HSPs) are divided into stress-inducible and constitutive types. Generally, HSP70 (stress inducible) and HSC70 (constitutive) are representative of their types, respectively. From the results of immunocytochemical analysis, both HSP70 and HSC70 were constitutively expressed in globotriaosylceramide (Gb3)-expressing Raji cells as well as Gb3-negative K562 cells. Furthermore, the membrane-bound form of HSP70 was present on the surfaces of two cell lines as patch and cap-like structures, and was recovered in the cholesterol rich microdomains (CRM) prepared from them. On the other hand, HSP70 was partially co-localized with Gb3 on the surface of Raji cells. This result suggested that HSP70 was not associated with all of Gb3 molecules but with Gb3 specifically located in the particular environment. The effect of Silurus asotus lectin (SAL), which is one of the rhamnose-binding lectins and specifically binds to Gb3, on the disappearance of membrane-bound HSP70 was dependent on whether Gb3 was present or not. These results suggested that the disappearance of membrane-bound HSP70 was caused by SAL binding to Gb3, that the reduction of membrane-bound HSP70 might result in the decrease in cell volume observed, and that the mechanism of SAL-induced HSP70 expression may differ from that of heat shock in Raji cells.  相似文献   
353.
建立了凝集素芯片技术检测糖蛋白的方法,对实验条件进行了优化,应用凝集素芯片初步检测分析了Chang?蒺s liver正常肝细胞总蛋白中的糖蛋白糖链构成.将凝集素ConA、GNA固定于环氧化修饰的玻片表面,用Cy3标记标准糖蛋白RNaseB,利用凝集素识别特异糖链的原理建立凝集素芯片检测糖蛋白的方法.摸索出最佳封闭剂是含1% BSA的磷酸缓冲液,最佳孵育时间及温度为3 h和室温,最佳孵育缓冲液为含1% BSA和0.05% Tween-20的磷酸缓冲液,并用甘露糖抑制实验验证了凝集素芯片结合的特异性.用包含10种凝集素的芯片,成功解析了标准糖蛋白RNaseB、Fetuin的糖链构成,证实了凝集素芯片检测糖蛋白糖链的可行性.最后用凝集素芯片初步检测分析了Chang?蒺s liver正常肝细胞总蛋白中的糖蛋白糖链构成,发现 Chang's liver正常肝细胞总蛋白中的糖蛋白可能有多价 Sia或GlcNAc、terminalα-1,3 mannose、GalNAc、Galβ-1,4GlcNAc这些糖链结构的存在.蛋白质糖基化是一种重要的翻译后修饰,它在微生物感染、细胞分化、肿瘤转移、细胞癌变等生命活动中起着重要作用,因此近年来蛋白质的糖基化研究受到广泛的重视,但由于缺乏一种简便、快速、高通量的检测手段,蛋白质糖基化修饰的研究发展缓慢.凝集素芯片技术的出现实现了对糖蛋白的快速、准确、高通量的检测 分析.  相似文献   
354.
Matrilysin (MMP‐7) plays important roles in tumor progression. Previous studies have suggested that MMP‐7 binds to tumor cell surface and promotes their metastatic potential. In this study, we identified C‐type lectin domain family 3 member A (CLEC3A) as a membrane‐bound substrate of MMP‐7. Although this protein is known to be expressed specifically in cartilage, its message was found in normal breast and breast cancer tissues as well as breast and colon cancer cell lines. Because few studies have been done on CLEC3A, we overexpressed its recombinant protein in human cancer cells. CLEC3A was found in the cell membrane, extracellular matrix (ECM), and culture medium of the CLEC3A‐expressing cells. CLEC3A has a basic sequence in the NH2‐terminal domain and showed a strong heparin‐binding activity. MMP‐7 cleaved the 20‐kDa CLEC3A protein, dividing it to a 15‐kDa COOH‐terminal fragment and an NH2‐terminal fragment with the basic sequence. The 15‐kDa fragment no longer had heparin‐binding activity. Treatment of the CLEC3A‐expressing cells with MMP‐7 released the 15‐kDa CLEC3A into the culture supernatant. Furthermore, the 20‐kDa CLEC3A promoted cell adhesion to laminin‐332 and fibronectin substrates, but this activity was abrogated by the cleavage by MMP‐7. These results suggest that CLEC3A binds to heparan sulfate proteoglycans on cell surface, leading to the enhancement of cell adhesion to integrin ligands on ECM. It can be speculated that the cleavage of CLEC3A by MMP‐7 weakens the stable adhesion of tumor cells to the matrix and promotes their migration in tumor microenvironments. J. Cell. Biochem. 106: 693–702, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
355.
α-d-Mannopyranosyl units were attached to an aromatic scaffold through disulfide linkages to obtain mono- to trivalent glycosylated ligands for lectin binding studies. Isothermal titration calorimetric (ITC) measurements indicated that binding affinities of these derivatives to Concanavalin A (Con A) were comparable to or slightly higher than that of methyl α-d-mannopyranoside (Ka values in the range of 104 M−1). The stoichiometries of the lectin-ligand complexes were in agreement with the formal valencies (1–3) of the respective ligands indicating cross-linking in interactions with the di- and trivalent derivatives. Multivalency effects could not, however, be observed with the latter. These ligands were shown to bind to the carbohydrate binding site of Con A using saturation transfer difference (STD) NMR competition experiments.  相似文献   
356.
Mucins form a group of heavily O‐glycosylated biologically important glycoproteins that are involved in a variety of biological functions, including modulating immune response, inflammation, and adhesion. Mucins are also involved in cancer and metastasis and often express diagnostic cancer antigens. Recently, a modified porcine submaxillary mucin (Tn‐PSM) containing GalNAcα1‐O‐Ser/Thr residues was shown to bind to soybean agglutinin (SBA) with ~106‐fold enhanced affinity relative to GalNAcα1‐O‐Ser, the pancarcinoma carbohydrate antigen. In this study, dynamic force spectroscopy is used to investigate molecular pairs of SBA and Tn‐PSM. A number of force jumps that demonstrate unbinding or rebinding events were observed up to a distance equal to 2.0 μm, consistent with the length of the mucin chain. The unbinding force increased from 103 to 402 pN with increasing force loading rate. The position of the activation barrier in the energy landscape of the interaction was 0.1 nm. The lifetime of the SBA–TnPSM complex in the absence of applied force was determined to be in the range 1.3–1.9 s. Kinetic parameters describing the rate of dissociation of other sugar lectin interactions are in the range 3.3 × 10?3–2.5 × 10?3 s. The long lifetime of the SBA‐TnPSM complex is compatible with a binding model in which lectin molecules “bind and jump” from α‐GalNAc residue to α‐GalNAc residue along the polypeptide chain of Tn‐PSM before dissociating. These findings have important implications for the molecular recognition properties of mucins. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 719–728, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   
357.
358.
The crystal structure of the l-rhamnose-binding lectin CSL3 was determined to 1.8 Å resolution. This protein is a component of the germline-encoded pattern recognition proteins in innate immunity. CSL3 is a homodimer of two 20 kDa subunits with a dumbbell-like shape overall, in which the N- and C-terminal domains of different subunits form lobe structures connected with flexible linker peptides. The complex structures of the protein with specific carbohydrates demonstrated the importance of the most variable loop region among homologues for the specificity toward oligosaccharides. CSL3 and Shiga-like toxin both use Gb3 as a cellular receptor to evoke apoptosis. They have very different overall architecture but share the separation distance between carbohydrate-binding sites. An inspection of the structure database suggested that the pseudo-tetrameric structure of CSL3 was unique among the known lectins. This architecture implies this protein might provide a unique tool for further investigations into the relationships between architecture and function of pattern recognition proteins.  相似文献   
359.
360.
Aims: The purpose of this study was to demonstrate the usefulness of lectin obtained from Talisia esculenta (TEL) seeds as a tool to recognize and study Microsporum canis. For this purpose, we investigated the antifungal and marker action of this lectin and the relationship of these effects with the presence of carbohydrates on the structure of this fungus. Methods and Results: The in vitro antifungal activity of TEL was analysed by broth microdilution assay. In addition, TEL was assessed against the arthroconidia present on hairs obtained from infected dogs and cats. The affinity of fluorescein isothiocyanate (FITC)‐labelled TEL for macroconidia and arthroconidia of M. canis was also tested. The effects of TEL on the growth of the M. canis strains began with 0·125 mg ml?1, and 100% inhibition was obtained with a concentration of 2 mg ml?1. The addition of carbohydrates, especially N‐acetyl‐glucosamine and d ‐mannose, inhibited these antifungal effects. TEL was able to inhibit the growth of arthroconidial chitin‐rich forms of M. canis obtained from hairs of infected animals and strains cultured in Sabouraud agar. FITC‐labelled TEL efficiently marked macroconidial and arthroconidial forms of M. canis, as shown by fluorescent microscopy. Conclusions: These results show that the inhibitory effects of TEL on M. canis growth may be related to the interaction of lectin with the carbohydrates present at the micro‐organism’s surface, mainly d ‐mannose and N‐acetyl‐glucosamine. Significance and Impact of the Study: Talisia esculenta can be used as an important tool in the biochemical study of M. canis or as a molecule to recognize this dermatophyte in infected tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号