首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1233篇
  免费   55篇
  国内免费   68篇
  1356篇
  2023年   5篇
  2022年   11篇
  2021年   16篇
  2020年   13篇
  2019年   18篇
  2018年   19篇
  2017年   19篇
  2016年   26篇
  2015年   30篇
  2014年   35篇
  2013年   87篇
  2012年   27篇
  2011年   52篇
  2010年   34篇
  2009年   53篇
  2008年   53篇
  2007年   64篇
  2006年   56篇
  2005年   57篇
  2004年   52篇
  2003年   69篇
  2002年   33篇
  2001年   40篇
  2000年   26篇
  1999年   32篇
  1998年   30篇
  1997年   39篇
  1996年   34篇
  1995年   49篇
  1994年   46篇
  1993年   21篇
  1992年   23篇
  1991年   19篇
  1990年   13篇
  1989年   11篇
  1988年   23篇
  1987年   15篇
  1986年   14篇
  1985年   20篇
  1984年   12篇
  1983年   10篇
  1982年   16篇
  1981年   8篇
  1980年   12篇
  1979年   3篇
  1978年   7篇
  1977年   3篇
  1976年   1篇
排序方式: 共有1356条查询结果,搜索用时 0 毫秒
191.
An L-rhamnose-binding isolectin named STL3 (subunit Mr, 21.5 k) was isolated from eggs of the steelhead trout (Oncorhynchus mykiss) in addition to STL1 (subunit Mr, 31.4 k) and STL2 (subunit Mr, 21.3 k) that had been already isolated. STLs were composed of non-covalently linked subunits. The primary structures of STL1 and STL3 were analyzed by the combined use of protein sequencing and cDNA sequencing. A cDNA encoding STL2, of which the protein sequence had been previously studied, was also analyzed. The STL1 subunit (289 amino acid residues) had different structural properties compared to those of the STL2 subunit (195 amino acid residues) and the STL3 subunit (195 amino acid residues); e.g., the number of repeated domain (three for STL1, and two for STL2 and STL3), although all of them were composed of tandemly repeated homologous domains (40 to 53% identities).

The lectin levels in various tissues and during the embryonic development showed that STL1 had different distribution and expression profiles from those of STL2 and STL3. Although STL1 could be detected in several tissues and serum of both male and female steelhead trout, STL2 and STL3 were only abundant in the ovary. STL2 and STL3 levels dramatically decreased just after hatching, however, the STL1 level increased temporarily. These results indicate that the multiple lectins from eggs of the steelhead trout form a novel rhamnose-binding lectin family with different structures and tissue distribution to share distinct functions in eggs.  相似文献   
192.
Molecular changes in the brain of individuals afflicted with Alzheimer's disease (AD) are an intense area of study. Little is known about the role of protein abundance and posttranslational modifications in AD progression and treatment, in particular large-scale intact N-linked glycoproteomics analysis. To elucidate the N-glycoproteome landscape, we developed an approach based on multi-lectin affinity enrichment, hydrophilic interaction chromatography, and LC-MS–based glycoproteomics. We analyzed brain tissue from 10 persons with no cognitive impairment or AD, 10 with asymptomatic AD, and 10 with symptomatic AD, detecting over 300 glycoproteins and 1900 glycoforms across the samples. The majority of glycoproteins have N-glycans that are high-mannosidic or complex chains that are fucosylated and bisected. The Man5 N-glycan was found to occur most frequently at >20% of the total glycoforms. Unlike the glycoproteomes of other tissues, sialylation is a minor feature of the brain N-glycoproteome, occurring at <9% among the glycoforms. We observed AD-associated differences in the number of antennae, frequency of fucosylation, bisection, and other monosaccharides at individual glycosylation sites among samples from our three groups. Further analysis revealed glycosylation differences in subcellular compartments across disease stage, including glycoproteins in the lysosome frequently modified with paucimannosidic glycans. These results illustrate the N-glycoproteomics landscape across the spectrum of AD clinical and pathologic severity and will facilitate a deeper understanding of progression and treatment development.  相似文献   
193.
Serum from larvae of Lacanobia oleracea L. (Lepidoptera; Noctuidae) parasitized by Eulophus pennicornis (Hymenoptera; Eulophidae) and from normal non‐parasitized larvae is capable of agglutinating rabbit, sheep, calf, goat, chicken, horse and human erythrocytes, but not yeast. Studies with a range of inhibitory carbohydrates showed that serum lectins(s) had specificity for sugars containing galactose and for rhamnose, and for the glycosubstances fetuin and asialofetuin. Lectin activity is heat‐labile and is not dependent on calcium. Parasitism by E. pennicornis caused an increase in the agglutination titre of the serum from larvae of L. oleracea but not an increase in specific activity (titre per mg protein per ml). However, when venom from the venom gland of female wasps was injected into L. oleracea larvae, both the agglutinating activity and the specific activity of the larval serum increased. The possible causes of this increase are discussed. It is suggested that venom contains antigenic components which, when injected into the haemocoel of the L. oleracea larva, may be increasing lectin synthesis and/or release into the serum.  相似文献   
194.
自然界中植物的生长发育受到各种环境变化的影响。为了响应外界各种环境条件,植物演化出一系列识别和传递环境信号的蛋白分子,其中比较典型的是植物细胞质膜上的类受体蛋白激酶(RLKs)。凝集素类受体蛋白激酶(LecRLKs)是类受体蛋白激酶家族中的一个亚族,它主要包含3个结构域:细胞外凝集素结构域、跨膜结构域和细胞内激酶结构域。根据细胞外凝集素结构域的不同,LecRLKs可分为3种不同类型:L、G和C型。近年来,研究表明LecRLKs在植物生物/非生物胁迫和发育调控中发挥非常重要的作用。该文综述了植物凝集素类受体蛋白激酶的研究历史、结构特点、分类以及生物学功能,并重点阐述凝集素类受体蛋白激酶在植物生物/非生物胁迫响应和调控发育方面的功能。对不同类型和不同功能的植物凝集素类受体蛋白激酶进行阐述将有利于对该类蛋白开展功能研究,并为作物改良提供有益借鉴。  相似文献   
195.
Bacillus subtilis No. 344 is a cytidine-producing mutant strain derived from wild type strain No. 122. When 3-deazauracil-resistant mutants were derived from strain No. 344, some of the mutants had higher productivities of cytidine. Among them, strain No. 428 accumulated 14.2 mg/ml cytidine in the culture. Cytidine 5′-triphosphate (CTP) synthetase from strain No. 428 changed to be free from feedback inhibition by CTP, compared with the enzyme from strain No. 344.  相似文献   
196.
The effect of unilamellar lipid vesicles composed of dioleoyl lecithin (DOL), egg yolk lecithin (EYL), 1:1 EYL:cholesterol (Chol), dipalmitoyl lecithin (DPL), and dimyristoyl lecithin (DML) on the mitogenic response in mouse lymphocytes was tested. Cortisone-resistant thymocytes were briefly treated with lipid vesicles and subsequently stimulated with concanavalin A (con A). All of the lipid vesicles induced an enhanced mitogenic response on day 3 as tested by [3H]TdR incorporation and by counting total cells. The order of enhanced [3H]TdR incorporation (?5.3 times the control) was DML>DPL>1:1 EYL:Chol>EYL?DOL> untreated control cells. These increases were paralleled by increased numbers of total cells. The response of spleen cells to a B-cell mitogen, bacterial lipopolysaccharide, was similarly enhanced by vesicle pretreatments in the same order. Vesicle treatments alone were not mitogenic.

Pretreatment of cells with lipid vesicles modified lectin binding: DML and DPL increased the binding of [125I]con A by three to four times the control, whereas 1:1 EYL:Chol, EYL, or DOL had little or no effect. The binding of [125I]phytohemagglutinin-P (PHA-P) to vesicle-treated cells was indistinguishable from untreated cells. The lectin (con A; PHA-P)-induced agglutination of vesicle-treated cells was also modified by different lipid vesicles in the same order as the mitogenic response.

Based on the results presented in the accompanying report [6], we find that the cell surface adsorption properties of the applied lipid vesicles correlate with their ability to enhance the mitogenic response, and that they modify agglutinability and lectin binding. These results are further discussed in terms of the possible alteration of membrane properties and subsequent cellular activity.  相似文献   
197.
198.
Changes in glycosylation have been associated with human cancer, but their complexity poses an analytical challenge. Ovarian cancer is a major cause of death in women because of an often late diagnosis. At least one‐third of patients presents ascites fluid at diagnosis, and almost all have ascites at recurrence. Vitronectin (Vn) is a multifunctional glycoprotein that is suggested to be implicated in ovarian cancer metastasis and is found within ascites. The present study evaluated the potential of using lectin affinity for characterizing the glycosylation pattern of Vn. Human Vn was purified from 1 sample of ovarian cancer ascites or a pool of plasma samples. Consistent findings were observed with both dot blot and lectin array assays. Based on a panel of 40 lectins, the lectin array revealed discriminant patterns of lectin binding to Vn glycans. Interestingly, almost all the highlighted interactions were found to be higher with Vn from ascites relative to the plasma counterpart. Also, the lectin array was able to discriminate profiles of lectin interactions (ConA, SNA‐I, PHA‐E, PHA‐L) between Vn samples that were not evident using dot blot, indicating its high sensitivity. The model of ConA binding during thermal unfolding of Vn confirmed the higher accessibility of mannosylated glycans in Vn from ascites as monitored by turbidimetry. Thus, this study demonstrated the usefulness of lectins and the lectin array as a glycoproteomic tool for high throughput and sensitive analysis of glycosylation patterns. Our data provide novel insights concerning Vn glycosylation patterns in clinical specimens, paving the way for further investigations regarding their functional impact and clinical interest.  相似文献   
199.
Herbal remedies were the first medicines used by humans due to the many pharmacologically active secondary metabolites produced by plants. Some of these metabolites inhibit cell division and can therefore be used for the treatment of cancer, e.g. the mitostatic drug paclitaxel (Taxol). The ability of plants to produce medicines targeting cancer has expanded due to the advent of genetic engineering, particularly in recent years because of the development of gene editing systems such as the CRISPR/Cas9 platform. These technologies allow the introduction of genetic modifications that facilitate the accumulation of native pharmaceutically-active substances, and even the production heterologous recombinant proteins, including human antibodies, lectins and vaccine candidates. Here we discuss the anti-cancer agents that are produced by plants naturally or following genetic modification, and the potential of these products to supply modern healthcare systems. Special emphasis will be put on proteinaceous anti-cancer agents, which can exhibit an improved selectivity and reduced side effects compared to small molecule-based drugs.  相似文献   
200.
Lectins and antimicrobial peptides (AMPs) are widely distributed in various insects and play crucial roles in primary host defense against pathogenic microorganisms. Two AMPs (cecropin and attacin) have been identified and characterized in the larvae of housefly. In this study, two novel C‐type lectins (CTLs) were obtained from Musca domestica, while their agglutinating and antiviral properties were evaluated. Real‐time PCR analysis showed that the mRNA levels of four immune genes (MdCTL1, MdCTL2, Cecropin, and Attacin) from M. domestica were significantly upregulated after injection with killed Gram‐negative Escherichia coli. Moreover, purified MdCTL1‐2 proteins can agglutinate E. coli and Staphylococcus aureus in the presence of calcium ions, suggesting their immune function is Ca2+ dependent. Sequence analysis indicated that typical WND and QPD motifs were found in the Ca2+‐binding site 2 of carbohydrate recognition domain from MdCTL1‐2, which was consistent with their agglutinating activities. Subsequently, antiviral experiments indicated that MdCTL1‐2 proteins could significantly reduce the infection rate of Spodoptera frugiperda 9 cells by the baculovirus Autographa californica multicapsid nucleopolyhedrovirus, indicating they might play important roles in insect innate immunity against microbial pathogens. In addition, MdCTL1‐2 proteins could effectively inhibit the replication of influenza H1N1 virus, which was similar to the effect of ribavirin. These results suggested that two novel CTLs could be considered a promising drug candidate for the treatment of influenza. Moreover, it is believed that the discovery of the CTLs with antiviral effects in M. domestica will improve our understanding of the molecular mechanism of insect immune response against viruses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号