首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1159篇
  免费   96篇
  国内免费   29篇
  1284篇
  2023年   45篇
  2022年   43篇
  2021年   59篇
  2020年   79篇
  2019年   61篇
  2018年   39篇
  2017年   22篇
  2016年   25篇
  2015年   45篇
  2014年   59篇
  2013年   89篇
  2012年   61篇
  2011年   63篇
  2010年   50篇
  2009年   45篇
  2008年   47篇
  2007年   37篇
  2006年   39篇
  2005年   33篇
  2004年   24篇
  2003年   19篇
  2002年   23篇
  2001年   28篇
  2000年   16篇
  1999年   22篇
  1998年   16篇
  1997年   20篇
  1996年   19篇
  1995年   17篇
  1994年   15篇
  1993年   16篇
  1992年   23篇
  1991年   11篇
  1990年   16篇
  1989年   6篇
  1988年   10篇
  1987年   8篇
  1986年   2篇
  1985年   7篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   5篇
  1977年   1篇
  1976年   3篇
  1974年   1篇
  1973年   2篇
排序方式: 共有1284条查询结果,搜索用时 11 毫秒
61.
Distinguishing the multiple effects of reactive oxygen species (ROS) on cancer cells is important to understand their role in tumour biology. On one side, ROS can be oncogenic by promoting hypoxic conditions, genomic instability and tumorigenesis. Conversely, elevated levels of ROS‐induced oxidative stress can induce cancer cell death. This is evidenced by the conflicting results of research using antioxidant therapy, which in some cases promoted tumour growth and metastasis. However, some antioxidative or ROS‐mediated oxidative therapies have also yielded beneficial effects. To better define the effects of oxidative stress, in vitro experiments were conducted on 4T1 and splenic mononuclear cells (MNCs) under hypoxic and normoxic conditions. Furthermore, hydrogen peroxide (H2O2; 10–1,000 μM) was used as an ROS source alone or in combination with hyaluronic acid (HA), which is frequently used as drug delivery vehicle. Our result indicated that the treatment of cancer cells with H2O2 + HA was significantly more effective than H2O2 alone. In addition, treatment with H2O2 + HA led to increased apoptosis, decreased proliferation, and multiphase cell cycle arrest in 4T1 cells in a dose‐dependent manner under normoxic or hypoxic conditions. As a result, migratory tendency and the messenger RNA levels of vascular endothelial growth factor, matrix metalloproteinase‐2 (MMP‐2), and MMP‐9 were significantly decreased in 4T1 cells. Of note, HA treatment combined with 100–1,000 μM H2O2 caused more damage to MNCs as compared to treatment with lower concentrations (10–50 μM). Based on these results, we propose to administer high‐dose H2O2 + HA (100–1000 μM) for intratumoural injection and low doses for systemic administration. Intratumoural route could have toxic and inhibitory effects not only on the tumour but also on residential myeloid cells defending it, whereas systemic treatment could stimulate peripheral immune responses against the tumour. More in vivo research is required to confirm this hypothesis.  相似文献   
62.
Given no reliable therapy for advanced malignant melanoma, it is important to elucidate the molecular mechanisms underlying the disease progression. Using a quantitative proteomics approach, the ‘isobaric tags for relative and absolute quantitation (iTRAQ)’ method, we identified that the extracellular matrix protein, periostin (POSTN), was highly expressed in invasive melanoma compared with normal skin. An immunohistochemical analysis showed that POSTN was expressed in all invasive melanoma (n = 20) and metastatic lymph node (n = 5) tissue samples, notably restricted in their stroma. In terms of the intercellular regulation of POSTN, we found that there was upregulation of POSTN when melanoma cells and normal human dermal fibroblasts (NHDFs) were cocultured, with restricted expression of TGF‐β1 and TGF‐β3. In a functional analyses, recombinant and NHDF‐derived POSTN significantly accelerated melanoma cell proliferation via the integrin/mitogen‐activated protein kinase (MAPK) signaling pathway in vitro. The size of implanted melanoma tumors was significantly suppressed in POSTN/Rag2 double knockout mice compared with Rag2 knock‐out mice. These results indicate that NHDF‐derived POSTN accelerates melanoma progression and might be a promising therapeutic target for malignant melanoma.  相似文献   
63.
Upon tumour necrosis factor alpha (TNFα) stimulation, cells respond actively by way of cell survival, apoptosis or programmed necrosis. The receptor‐interacting proteins 1 (RIP1) and 3 (RIP3) are responsible for TNFα‐mediated programmed necrosis. To delineate the differential contributions of RIP3 and RIP1 to programmed necrosis, L929 cells were stimulated with TNFα, carbobenzoxy‐valyl‐alanyl‐aspartyl‐[O‐methyl]‐fluoromethylketone (zVAD) or zVAD along with TNFα following RNA interference against RIP1 and RIP3, respectively. RIP1 silencing did not protect cells from TNFα‐mediated cell death, while RIP3 down‐regulation made them refractory to TNFα. The heat shock protein 90 inhibitor geldanamycin (GA) down‐regulated both RIP1 and RIP3 expression, which rendered cells resistant to zVAD/TNFα‐mediated cell death but not to TNFα‐mediated cell death alone. Therefore, the protective effect of GA on zVAD/TNFα‐stimulated necrosis might be attributed to RIP3, not RIP1, down‐regulation. Pretreatment of L929 cells with rapamycin mitigated zVAD‐mediated cell death, while the autophagy inhibitor chloroquine did not affect necrotic cell death. Meanwhile, necrotic cell death by zVAD and TNFα was caused by reactive oxygen species generation and effectively diminished by lipid‐soluble butylated hydroxyanisole. Taken together, the results indicate that RIP1 and RIP3 can independently mediate death signals being transduced by two different death stimuli, zVAD and TNFα. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
64.
Bone loss (osteopenia) is a common complication in human solid tumour. In addition, after surgical treatment of gynaecological tumour, osteoporosis often occurs due to the withdrawal of oestrogen. The major characteristic of osteoporosis is the low bone mass with micro-architectural deteriorated bone tissue. And the main cause is the overactivation of osteoclastogenesis, which is one of the most important therapeutic targets. Inflammation could induce the interaction of RANKL/RANK, which is the promoter of osteoclastogenesis. Triptolide is derived from the traditional Chinese herb lei gong teng, presented multiple biological effects, including anti-cancer, anti-inflammation and immunosuppression. We hypothesized that triptolide could inhibits osteoclastogenesis by suppressing inflammation activation. In this study, we confirmed that triptolide could suppress RANKL-induced osteoclastogenesis in bone marrow mononuclear cells (BMMCs) and RAW264.7 cells and inhibited the osteoclast bone resorption functions. PI3K-AKT-NFATc1 pathway is one of the most important downstream pathways of RANKL-induced osteogenesis. The experiments in vitro indicated that triptolide suppresses the activation of PI3K-AKT-NFATc1 pathway and the target point located at the upstream of AKT because both NFATc1 overexpression and AKT phosphorylation could ameliorate the triptolide suppression effects. The expression of MDM2 was elevated, which demonstrated the MDM-p53-induced cell death might contribute to the osteoclastogenesis suppression. Ovariectomy-induced bone loss and inflammation activation were also found to be ameliorated in the experiments in vivo. In summary, the new effect of anti-cancer drug triptolide was demonstrated to be anti-osteoclastogenesis, and we demonstrated triptolide might be a promising therapy for bone loss caused by tumour.  相似文献   
65.
Osteosarcoma (OS) is one of the most common metastatic bone cancers, which results in significant morbidity and mortality. The important role of long non‐coding RNAs (lncRNAs) in the biological processes of OS has been demonstrated through several studies. In the current study, we evaluated the role of the lncRNA, LINC01128, in OS. We analysed the expression of LINC01128 in three OS gene expression omnibus (GEO) data sets GSE21257, GSE36001 and GSE42352. The expression of LINC01128 in OS tissues and matched non‐tumour tissues obtained from 50 OS patients was detected using qRT‐PCR. The association between LINC01128 expression and overall survival of OS patients was evaluated using the Kaplan‐Meier method. The effects of LINC01128 knockdown and overexpression were evaluated through in vitro and in vivo assays. The LINC01128/miR‐299‐3p/ MMP2 axis was verified using dual‐luciferase reporter assay and qRT‐PCR assays. GEO data sets analysis revealed that the expression of LINC01128 was increased in OS. Elevated LINC01128 expression was accompanied by shorter overall survival in OS patients. Functional studies revealed that LINC01128 knockdown reduced the proliferation, migration and invasion of OS cells both in vitro and in vivo. Mechanistically, LINC01128 sponged miR‐299‐3p to increase MMP2 expression. Rescue assays determined the role of the LINC01128/miR‐299‐3p/MMP2 axis in the proliferation, migration and invasion of OS cells. Additionally, the Wnt/β‐catenin signalling pathway was activated by LINC01128 and MMP2 in OS cell lines. In summary, this study demonstrates that LINC01128 facilitates OS by functioning as a sponge of miR‐299‐3p, thus promoting MMP2 expression and activating the Wnt/β‐catenin signalling pathway.  相似文献   
66.
Acute kidney injury (AKI) is a high frequent and common complication following acute myocardial infarction (AMI). This study examined and identified the effect of AMI-induced AKI on organic anion transporter 1 (Oat1) and Oat3 transport using clinical setting of pre-renal AKI in vivo. Cardiac ischaemia (CI) and cardiac ischaemia and reperfusion (CIR) were induced in rats by 30-min left anterior descending coronary artery occlusion and 30-min occlusion followed by 120-min reperfusion, respectively. Renal hemodynamic parameters, mitochondrial function and Oat1/Oat3 expression and function were determined along with biochemical markers. Results showed that CI markedly reduced renal blood flow and pressure by approximately 40%, while these parameters were recovered during reperfusion. CI and CIR progressively attenuated renal function and induced oxidative stress by increasing plasma BUN, creatinine and malondialdehyde levels. Correspondingly, SOD, GPx, CAT mRNAs were decreased, while TNFα, IL1β, COX2, iNOS, NOX2, NOX4, and xanthine oxidase were increased. Mitochondrial dysfunction as indicated by increasing ROS, membrane depolarisation, swelling and caspase3 activation were shown. Early significant detection of AKI; KIM1, IL18, was found. All of which deteriorated para-aminohippurate transport by down-regulating Oat1 during sudden ischaemia. This consequent blunted the trafficking rate of Oat1/Oat3 transport via down-regulating PKCζ/Akt and up-regulating PKCα/NFκB during CI and CIR. Thus, this promising study indicates that CI and CIR abruptly impaired renal Oat1 and regulatory proteins of Oat1/Oat3, which supports dysregulation of remote sensing and signalling and inter-organ/organismal communication. Oat1, therefore, could potentially worsen AKI and might be a potential therapeutic target for early reversal of such injury.  相似文献   
67.
The two new potent anthracycline antitumor antibiotics, morpholinodaunomycin and cyanomorpholinoadriamycin, are nonmutagenic or weakly mutagenic in Salmonella typhimurium or V79 Chinese hamster cells, but highly active inducing DNA repair in in cultured rat hepatocytes. Both agents were found to induce malignant transformation in vitro of C3H M2 mouse fibroblasts and mammary tumors in female Sprague-Dawley rats. The data indicate a) that these new anthracyclines, too, are highly oncogenic and b) in conjunction with previously published results, that the predictive value of in vitro short-term tests for in vivo carcinogenicity is dependent on the employment of a battery of such tests.Abbreviations ADM adriamycin - CNMoADM cyanomorpholinoadriamycin - DNM daunomycin - MNNG N-methyl-N-nitro-N-nitrosoguanidine Dedicated to Dr. J.H. Weisburger on his 65th birthday  相似文献   
68.
Cancer development is a complex process involving both genetic and epigenetic changes. The SWI/SNF (switch/sucrose non-fermentable) chromatin remodelling complex, one of the most studied ATP-dependent complexes, plays an important role in coordinating chromatin structural stability, gene expression and post-translational modifications. The SWI/SNF complex can be classified into BAF, PBAF and GBAF according to their constituent subunits. Cancer genome sequencing studies have shown a high incidence of mutations in genes encoding subunits of the SWI/SNF chromatin remodelling complex, with abnormalities in one or more of these genes present in nearly 25% of all cancers, which indicating that stabilizing normal expression of genes encoding subunits in the SWI/SNF complex may prevent tumorigenesis. In this paper, we will review the relationship between the SWI/SNF complex and some clinical tumours and its mechanism of action. The aim is to provide a theoretical basis to guide the diagnosis and treatment of tumours caused by mutations or inactivation of one or more genes encoding subunits of the SWI/SNF complex in the clinical setting.  相似文献   
69.
The galactosyltransferase, GalT-4, which catalyses the biosynthesisin vitro of neolactotetraosylceramide, nLcOse4Cer (Gal1-4GleNAc1-3Gal1-4Glc-Cer) from lactotriaosylceramide, LcOse3Cer (GlcNAc1-3Gal1-4Glc-Cer), and UDP-galactose has been purified 107 500-fold from a mineral oil induced mouse T-lyphoma P-1798, using affinity columns. The purified enzyme is partially stabilized in the presence of phospholipid liposomes. Two closely migrating protein bands of apparent molecular weights 56 kDa and 63 kDa were observed after sodium dodecyl sulfate polyacrylamide gel electrophoresis of highly purified mouse GalT-4. These two protein bands, when subjected to limited proteolysis, resulted in three peptides with identical mobilities indicating amino acid sequence identity between the proteins. Both protein bands from P-1798 gave a positive immunostain when tested with polyclonal antibody against bovine lactose synthetase (UDP-Gal:Glc 4-galactosyltransferase) following Western blot analysis on nitrocellulose paper. The enzyme has a pH optimum between 6.5 and 7.0 and like all other galactosyltransferases, GalT-4 has absolute requirements for divalent cation (Mn2+). TheK m values for the substrate LcOse3Cer and donor UDP-galactose are 110 and 250 µm, respectively. Substrate competition studies with LcOse3Cer and either asialo-agalacto-1-acid glycoprotein orN-acetylglucosamine revealed that these reactions might be catalysed by the same protein. The only other glycolipid which showed acceptor activity toward the purified GalT-4 was iLcOse5Cer (GlcNAc1-1-3Gal1-4Lc3), the precursor for polylactosamine antigens. However, competition studies with these two active substrates using the most purified enzyme fraction, revealed that these two reactions might be catalysed by two different proteins since the experimental values were closer to the theoretical values calculated for two enzymes. Interestingly however, it seems that the GalT-4 from P-1798 has an absolute requirement for anN-acetylglucosamine residue in the substrate since the lyso-derivative (GlcNH21-3Gal1-4Glc-sphingosine) of the acceptor glycolipid LcOse3Cer is completely inactive as substrate while theK m andV max of the reacetylated substrate (GlcNac1-3Gal1-4Glc-acetylsphingosine) was comparable with LcOse3Cer. Autoradiography of the radioactive product formed by purified P-1798 GalT-4 confirmed the presence of nLcOse4Cer, as the product cochromatographed with authentic glycolipid. The monoclonal antibody IB-2, specific for nLcOse4Cer, also produced a positive immunostained band on TLC as well as giving a positive ELISA when tested with radioactive product obtained using a highly purified enzyme from mouse P-1798 T-lymphoma.Abbreviations EDTA ethylenediamine tetraacetate - ME -mercaptoethanol - PEG polyethylene glycol - PBS phosphate buffered saline - Suc sucrose - Mn2+ manganese - Gal galactose - GlcNAc N-acetylglucosamine - UDP-Gal Uridine diphosphate galactose - Ab antibody - SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - ECB embryonic chicken brain - Cer ceramide - nLc4 or NlcOse4Cer Gal1-4GleNac1-3Gal1-4Glc-Cer, neoLactotetraosylceramide - Lc3 or LcOse3Cer GlcNac1-3Gal1-4Glc-Cer, lactotriaosylceramide - iLc5 iLcOse5Cer, GlcNAc1-3nLcOse4Cer - nLc6 nLcOse6Cer, Gal1-4iLcOse5Cer - SAGal1AGP asialo-agalacto1-acid glycoprotein - TLC thin layer chromatography  相似文献   
70.
We have previously documented that transient polyploidy is a potential cell survival strategy underlying the clonogenic re-growth of tumour cells after genotoxic treatment. In an attempt to better define this mechanism, we recently documented the key role of meiotic genes in regulating the DNA repair and return of the endopolyploid tumour cells (ETC) to diploidy through reduction divisions after irradiation. Here, we studied the role of the pluripotency and self-renewal stem cell genes NANOG, OCT4 and SOX2 in this polyploidy-dependent survival mechanism. In irradiation-resistant p53-mutated lymphoma cell-lines (Namalwa and WI-L2-NS) but not sensitive p53 wild-type counterparts (TK6), low background expression of OCT4 and NANOG was up-regulated by ionising radiation with protein accumulation evident in ETC as detected by OCT4/DNA flow cytometry and immunofluorescence (IF). IF analysis also showed that the ETC generate PML bodies that appear to concentrate OCT4, NANOG and SOX2 proteins, which extend into complex nuclear networks. These polyploid tumour cells resist apoptosis, overcome cellular senescence and undergo bi- and multi-polar divisions transmitting the up-regulated OCT4, NANOG and SOX2 self-renewal cassette to their descendents. Altogether, our observations indicate that irradiation-induced ETC up-regulate key components of germ-line cells, which potentially facilitate survival and propagation of the tumour cell population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号