首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2918篇
  免费   193篇
  国内免费   157篇
  2024年   3篇
  2023年   32篇
  2022年   43篇
  2021年   66篇
  2020年   67篇
  2019年   77篇
  2018年   74篇
  2017年   62篇
  2016年   95篇
  2015年   108篇
  2014年   109篇
  2013年   183篇
  2012年   95篇
  2011年   121篇
  2010年   99篇
  2009年   154篇
  2008年   141篇
  2007年   166篇
  2006年   141篇
  2005年   142篇
  2004年   140篇
  2003年   112篇
  2002年   96篇
  2001年   73篇
  2000年   94篇
  1999年   76篇
  1998年   84篇
  1997年   62篇
  1996年   60篇
  1995年   58篇
  1994年   55篇
  1993年   47篇
  1992年   46篇
  1991年   40篇
  1990年   34篇
  1989年   39篇
  1988年   25篇
  1987年   24篇
  1986年   21篇
  1985年   27篇
  1984年   18篇
  1983年   11篇
  1982年   13篇
  1981年   9篇
  1980年   9篇
  1979年   7篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1975年   1篇
排序方式: 共有3268条查询结果,搜索用时 15 毫秒
101.
Flow cytometry (FCM) was performed to monitor the cellular effects of extremely-low-frequency magnetic field on mouse spermatogenesis. Groups of five male hybrid F1 mice aged 8–10 weeks were exposed to 50 Hz magnetic field. The strength of the magnetic field was 1.7 mT. Exposure times of 2 and 4 h were chosen. FCM measurements were performed 7, 14, 21, 28, 35, and 42 days after treatment. For each experimental point, a sham-treated group was used as a control. The possible effects were studied by analyzing the DNA content distribution of the different cell types involved in spermatogenesis and using the elongated spermatids as the reference population. The relative frequencies of the various testicular cell types were calculated using specific software. In groups exposed for 2 h, no effects were observed. In groups exposed for 4 h, a statistically significant (P < 0.001) decrease in elongated spermatids was observed at 28 days after treatment. This change suggests a possible cytotoxic and/or cytostatic effect on differentiating spermatogonia. However, further studies are being carried out to investigate the effects of longer exposure times. © 1995 Wiley-Liss, Inc.  相似文献   
102.
Chalcone synthase (CHS) is a key enzyme and producing flavonoid derivatives as well play a vital roles in sustaining plant growth and development. However, the systematic and comprehensive analysis of CHS genes in island cotton (G. barbadense) has not been reported yet especially response to cytoplasmic male sterility (CMS). To fill this knowledge gap, a genome-wide investigation of CHS genes were studied in island cotton. A total of 20 GbCHS genes were identified and grouped into five GbCHSs. The gene structure analysis revealed that most of GbCHS genes consisted of two exons and one intron, and 20 motifs were identified. Twenty five pairs duplicated events (12 GbCHS genes) were identified including 23 segmental duplication pairs and two tandem duplication events, representing that GbCHS gene family amplification mainly owned to segmental duplication events and evolving slowly. Gene expression analysis exhibited that the GbCHS family genes presented a diversity expression patterns in various organs of cotton. Coupled with functional predictions and gene expression, the abnormal expression of GbCHS06, 10, 16 and 19 might be associated with pollen abortion of CMS line in island cotton. Conclusively, GbCHS genes exhibited diversity and conservation in many aspects, which will help to better understand functional studies and a reference for CHS research in island cotton and other plants.  相似文献   
103.
104.
So far, over 50 spontaneous male sterile mutants of tomato have been described and most of them are categorized as genetic male sterility. To date, the mechanism of tomato genetic male sterility remained unclear. In this study, differential proteomic analysis is performed between genetic male sterile line (2‐517), which carries the male sterility (ms1035) gene, and its wild‐type (VF‐11) using isobaric tags for relative and absolute quantification‐based strategy. A total of 8272 proteins are quantified in the 2–517 and VF‐11 lines at the floral bud and florescence stages. These proteins are involved in different cellular and metabolic processes, which express obvious functional tendencies toward the hydroxylation of the ω‐carbon in fatty acids, the tricarboxylic acid cycle, the glycolytic, and pentose phosphate pathways. Based on the results, a protein network explaining the mechanisms of tomato genetic male sterility is proposed, finding the compromising fat acid metabolism may cause the male sterility. These results are confirmed by parallel reaction monitoring, quantitative Real‐time PCR (qRT‐PCR), and physiological assays. Taken together, these results provide new insights into the metabolic pathway of anther abortion induced by ms1035 and offer useful clues to identify the crucial proteins involved in genetic male sterility in tomato.  相似文献   
105.
106.
In semiarid conditions, feed is often scarce and variable with underfeeding being common; these factors can potentially induce fertility reductions in both sexes. Sexually active bucks are able to very efficiently fertilize out-of-season goats, but we do not know whether underfeeding would reduce the ability of bucks to fertilize goats during these periods. Two experiments were conducted to determine (i) testicular size and change of odor intensity of undernourished bucks exposed to long days and (ii) the ability of these bucks to stimulate reproductive activity in seasonally anestrous goats. In experiment 1, bucks (n = 7) were fed 1.5 times the normal maintenance requirements from September to May and formed the well-fed group. Another group of bucks (n = 7) were fed 0.5 times the maintenance requirements and formed the undernourished group. All bucks were subjected to artificially long days from 1 November to 15 January; this period was followed by a natural photoperiod until 30 May. Body weight, scrotal circumference and male odor intensity changes were determined every 2 weeks. In experiment 2, two groups of female goats (n = 26 each) were exposed to well-fed (n = 2) or undernourished bucks (n = 2) on 31 March. Ovulations and pregnancy rates were determined by transrectal ultrasonography. In experiment 1, a treatment by time interaction was detected for BW, scrotal circumference and odor intensity changes (P < 0.001). The BWs of well-fed bucks were greater than those of the undernourished bucks from October to May (P < 0.01), as were the scrotal circumferences from December to March (P < 0.05) and odor intensities from February to May (P < 0.05). In experiment 2, the proportions of females that ovulated at least once (100% v. 96%) or those that were diagnosed as pregnant (85% v. 77%; P > 0.05) did not differ significantly between the goats exposed to well-fed or undernourished bucks. The interval between the introduction of bucks and the onset of estrous behavior was shorter in goats exposed to well-fed bucks compared to the interval for those goats exposed to undernourished bucks (2.5 ± 0.2 v. 9.5 ± 0.6 days; P < 0.05). We conclude that undernourishment reduces the testicular size and odor intensity responses in bucks exposed to long days, but that undernourished bucks are still able to stimulate reproductive activity in seasonally anestrous goats, as is also the case for well-fed bucks.  相似文献   
107.
Male infertility is becoming a rapidly growing problem around the world, mainly in the highly developed countries. Seminal proteome composition seems to be one of the crucial factors of the proper course of fertilization ‐ clusterin (CLU) is among the most important ones. CLU, as one of the crucial seminal plasma glycoproteins, plays a very important role in sperm capacitation and immune tolerance in the female reproductive tract. CLU is also known as a sensitive marker of oxidative stress. It has six n ‐glycosylation sites and also exhibits chaperone activity. An analysis of changes in the profile and degree of CLU glycosylation may shed some new light on the molecular mechanisms of the fertilization process and may be used as an additional diagnostic marker of male fertility. This study constitutes a review of the recently available literature concerning human seminal CLU, including changes in its glycosylation, analyzed in the context of human reproduction.  相似文献   
108.
While the anatomy and physiology of human reproduction differ between the sexes, the effects of hormones on skeletal growth do not. Human bone growth depends on estrogen. Greater estrogen produced by ovaries causes bones in female bodies to fuse before males' resulting in sex differences in adult height and mass. Female pelves expand more than males' due to estrogen and relaxin produced and employed by the tissues of the pelvic region and potentially also due to greater internal space occupied by female gonads and genitals. Evolutionary explanations for skeletal sex differences (aka sexual dimorphism) that focus too narrowly on big competitive men and broad birthing women must account for the adaptive biology of skeletal growth and its dependence on the developmental physiology of reproduction. In this case, dichotomizing evolution into proximate‐ultimate categories may be impeding the progress of human evolutionary science, as well as enabling the popular misunderstanding and abuse of it.  相似文献   
109.
Failed oocyte activation has been observed in unexplained infertile (UI) and asthenoteratozoospermic (AT) men. The deficiency of phospholipase C‐zeta (PLCζ) could be a possible reason for such failures and has not been studied yet. We investigated the expression and localization of PLCζ protein in the sperms of patients with UI and AT conditions. The relationships between PLCζ‐related parameters with male age, sperm characteristics, DNA integrity, and cellular maturity were assessed. Semen samples were collected from fertile (n = 40), UI (n = 40), and AT (n = 40) men. Subsequently, semen analysis, DNA fragmentation, hyaluronic acid‐binding ability, and PLCζ level along with its distribution were evaluated using computer‐assisted sperm analyzer, sperm chromatin structure assay (SCSA), hyaluronic acid‐binding assay (HBA), western blot analysis and immunofluorescence microscopy, respectively. Unlike SCSA, the values of HBA, and PLCζ expression were significantly reduced in UI and AT patients compared to fertile men, whereas no significant differences were observed among the experimental groups in terms of PLCζ localization patterns. The regression analysis also showed that HBA is the only variable associated with PLCζ levels. Furthermore, the correlation of male age with PLCζ localization in postacrosomal, equatorial, and acrosomal+postacrosomal+equatorial (A+PA+E) patterns, as well as the relation of normal morphology, with the (A+PA+E) pattern, remained in the regression model. Our findings indicated that reduced PLCζ level along with the increased DNA fragmentation and impaired maturation may be possible etiologies of decreased fertilization in the studied subjects.  相似文献   
110.
Incorporating male sterility into hybrid seed production reduces its cost and ensures high varietal purity. Despite these advantages, male‐sterile lines have not been widely used to produce tomato (Solanum lycopersicum) hybrid seeds. We describe the development of a biotechnology‐based breeding platform that utilized genic male sterility to produce hybrid seeds. In this platform, we generated a novel male‐sterile tomato line by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9)‐mediated mutagenesis of a stamen‐specific gene SlSTR1 and devised a transgenic maintainer by transforming male‐sterile plants with a fertility‐restoration gene linked to a seedling‐colour gene. Offspring of crosses between a hemizygous maintainer and the homozygous male‐sterile plant segregated into 50% non‐transgenic male‐sterile plants and 50% male‐fertile maintainer plants, which could be easily distinguished by seedling colour. This system has great practical potential for hybrid seed breeding and production as it overcomes the problems intrinsic to other male‐sterility systems and can be easily adapted for a range of tomato cultivars and diverse vegetable crops.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号