首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7646篇
  免费   631篇
  国内免费   387篇
  8664篇
  2024年   16篇
  2023年   88篇
  2022年   108篇
  2021年   166篇
  2020年   191篇
  2019年   229篇
  2018年   219篇
  2017年   203篇
  2016年   297篇
  2015年   304篇
  2014年   301篇
  2013年   442篇
  2012年   293篇
  2011年   314篇
  2010年   277篇
  2009年   436篇
  2008年   405篇
  2007年   450篇
  2006年   330篇
  2005年   362篇
  2004年   337篇
  2003年   267篇
  2002年   250篇
  2001年   223篇
  2000年   223篇
  1999年   229篇
  1998年   204篇
  1997年   160篇
  1996年   176篇
  1995年   131篇
  1994年   136篇
  1993年   125篇
  1992年   112篇
  1991年   89篇
  1990年   88篇
  1989年   88篇
  1988年   70篇
  1987年   56篇
  1986年   44篇
  1985年   50篇
  1984年   46篇
  1983年   25篇
  1982年   27篇
  1981年   21篇
  1980年   15篇
  1979年   10篇
  1978年   9篇
  1977年   9篇
  1976年   5篇
  1973年   4篇
排序方式: 共有8664条查询结果,搜索用时 15 毫秒
81.
I tested whether a region of high female frequencies in the gynodioecious plant, Nemophila menziesii, may be due to hybridization between regionally distributed populations with different corolla colours. I crossed plants in the greenhouse from populations with different corolla colours and found that hybrid crosses yielded higher frequencies of females than within-colour crosses. In the field, I found that populations with high female frequencies had intermediate mean corolla colours and higher variance in corolla colour, two traits suggesting hybridization. Nemophila menziesii has nuclear-cytoplasmic sex inheritance, thus if populations with different corolla colours are fixed for different male-sterile cytoplasms and matching nuclear restorer alleles, hybridization between populations with different corolla colour should yield high frequencies of females. Two populations that are all hermaphroditic in the field segregated females in hybrid crosses suggesting that field populations may contain sex ratio distorters but appear undistorted, a prediction of genomic conflict theory.  相似文献   
82.

Background and Aims

Spatial (herkogamy) and temporal (dichogamy) separation of pollen presentation and stigma receptivity have been interpreted as reducing interference between male and female functions in hermaphroditic flowers. However, spatial separation leads to a potential conflict: reduced pollination accuracy, where pollen may be placed in a location on the pollinator different from the point of stigma contact.

Methods

To understand better how herkogamous flowers resolve this conflict, a study was made of a subalpine herb, Parnassia epunctulata, the nectariferous flowers of which exhibit sequential anther dehiscence (staggered pollen presentation) and stamen movements; usually one newly dehisced anther is positioned each day over the central gynoecium, while the older stamens bend away from the central position.

Key Results

The open flowers were visited by a variety of pollinators, most of which were flies. Seed set was pollinator-dependent (bagged flowers set almost no seeds) and pollen-limited (manual pollination increased seed set over open pollination). Analyses of adaptive accuracy showed that coordinated stamen movements and style elongation (movement herkogamy) dramatically increased pollination accuracy. Specifically, dehiscing anthers and receptive stigmas were positioned accurately in the vertical and horizontal planes in relation to the opposite sexual structure and pollinator position. By contrast, the spatial correspondence between anthers and stigma was dramatically lower before the anthers dehisced and after stamens bent outwards, as well as before and after the period of stigmatic receptivity.

Conclusions

It is shown for the first time that a combination of movement herkogamy and dichogamy can maintain high pollination accuracy in flowers with generalized pollination. Staggered pollen and stigma presentation with spatial correspondence can both reduce sexual interference and improve pollination accuracy.  相似文献   
83.
Summary Differences in fertility restoration and mitochondrial nucleic acids permitted division of 25 accessions of S-type male sterile cytoplasm (cms-S) of maize into five subgroups: B/D, CA, LBN, ME, and S(USDA). S cytoplasm itself (USDA cytoplasm) was surprisingly not representative of cms-S, since only two other accessions, TC and I, matched its mitochondrial DNA pattern. CA was the predominant subgroup, containing 18 of the 25 accessions. The B/D and ME subgroups were the most fertile and LBN the most sterile. The exceptional sterility of LBN cytoplasm makes it the most promising of the 25 cms-S accessions for the production of hybrid seed. The most efficient means of quantifying the fertility of the subgroups was analysis of pollen morphology in plants having cms-S cytoplasm and simultaneously being heterozygous for nuclear restorer-of-fertility (Rf) genes. This method took advantage of the gametophytic nature of cms-S restoration. The inbred NY821LERf was found to contain at least two restorer genes for cms-S. Fertility differences were correlated with mitochondrial nucleic acid variation in the LBN, ME, and S (USDA) subgroups.Paper No. 9498 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC  相似文献   
84.
I compared male allocation to prolonged mate guarding versusnot guarding between two populations of the soapberry bug (Jaderahaematoloma) that differ in adult sex ratio: Oklahoma, USA (mean± SD adult sex ratio, 2.70 ± 0.95 males per female),and Florida, USA (1.09 ± 0.26 males per female). To predictthe reproductive performance of each mating tactic in each population,I collected data on search time per mating, time required forguarding to be effective, sperm competition, female rematingpropensity, and female resistance to guarding. Search time alonediffered significantly between the populations, being much greaterin Oklahoma (estimated as 26.2 h per mate) than in Florida (estimatedas 9.6 h per mate). For males in each region, these data wereused to model the costs and benefits of guarding for differentnumbers of oviposition bouts versus not guarding. The reproductiverate of nonguarders in Oklahoma is exceeded by that of guarderswho remain with a female for more than one oviposition bout,but in Florida, the reproductive rate of nonguarders is onlyexceeded by that of guarders who remain with a female for atleast three ovipositions. Consistent with the model, Oklahomamales in field arenas guarded more frequently than did Floridamales. However, nonguarding was common in both populations,and guarding durations were highly variable.  相似文献   
85.
Conventional sex roles imply caring females and competitive males. The evolution of sex role divergence is widely attributed to anisogamy initiating a self‐reinforcing process. The initial asymmetry in pre‐mating parental investment (eggs vs. sperm) is assumed to promote even greater divergence in post‐mating parental investment (parental care). But do we really understand the process? Trivers [Sexual Selection and the Descent of Man 1871–1971 (1972), Aldine Press, Chicago] introduced two arguments with a female and male perspective on whether to care for offspring that try to link pre‐mating and post‐mating investment. Here we review their merits and subsequent theoretical developments. The first argument is that females are more committed than males to providing care because they stand to lose a greater initial investment. This, however, commits the ‘Concorde Fallacy’ as optimal decisions should depend on future pay‐offs not past costs. Although the argument can be rephrased in terms of residual reproductive value when past investment affects future pay‐offs, it remains weak. The factors likely to change future pay‐offs seem to work against females providing more care than males. The second argument takes the reasonable premise that anisogamy produces a male‐biased operational sex ratio (OSR) leading to males competing for mates. Male care is then predicted to be less likely to evolve as it consumes resources that could otherwise be used to increase competitiveness. However, given each offspring has precisely two genetic parents (the Fisher condition), a biased OSR generates frequency‐dependent selection, analogous to Fisherian sex ratio selection, that favours increased parental investment by whichever sex faces more intense competition. Sex role divergence is therefore still an evolutionary conundrum. Here we review some possible solutions. Factors that promote conventional sex roles are sexual selection on males (but non‐random variance in male mating success must be high to override the Fisher condition), loss of paternity because of female multiple mating or group spawning and patterns of mortality that generate female‐biased adult sex ratios (ASR). We present an integrative model that shows how these factors interact to generate sex roles. We emphasize the need to distinguish between the ASR and the operational sex ratio (OSR). If mortality is higher when caring than competing this diminishes the likelihood of sex role divergence because this strongly limits the mating success of the earlier deserting sex. We illustrate this in a model where a change in relative mortality rates while caring and competing generates a shift from a mammalian type breeding system (female‐only care, male‐biased OSR and female‐biased ASR) to an avian type system (biparental care and a male‐biased OSR and ASR).  相似文献   
86.
Sperm competition theory has traditionally focused on how male allocation responds to female promiscuity, when males compete to fertilize a single clutch of eggs. Here, we develop a model to ask how female sperm use and storage across consecutive reproductive events affect male ejaculate allocation and patterns of mating and paternity. In our model, sperm use (a single parameter under female control) is the main determinant of sperm competition, which alters the effect of female promiscuity on male success and, ultimately, male reproductive allocation. Our theory reproduces the general pattern predicted by existing theory that increased sperm competition favors increased allocation to ejaculates. However, our model predicts a negative correlation between male ejaculate allocation and female promiscuity, challenging the generality of a prevailing expectation of sperm competition theory. Early models assumed that the energetic costs of precopulatory competition and the level of sperm competition are both determined by female promiscuity, which leads to an assumed covariation between these two processes. By modeling precopulatory costs and sperm competition independently, our theoretical framework allows us to examine how male allocation should respond independently to variation in sperm competition and energetic trade‐offs in mating systems that have been overlooked in the past.  相似文献   
87.
Summary While Aspergillus strains are also being considered as potential hosts for production of extracellular heterologous proteins, the proteases produced by the host are highly problematic in that they typically modify and degrade the recombinant proteins. Culture-based approaches for minimization of protease activity in culture supernatants of Aspergillus niger NRRL-3 included reduction or elimination of peptide nitrogen in the medium, preferential use of a defined salts medium rather than a non-peptide nitrogen medium containing yeast-nitrogen base, supplementation of the medium with carboxymethylcellulose and cultivation at pH 6.5 rather than 7.5. In general, increased proteolytic activity was observed after maximum biomass was observed and biomass was declining suggesting the majority of protease activity was released by cell lysis. Carboxymethylcellulose shifted mycelial morphology from pelleted to filamentous. Mycelium lysis in the centre of pellets, with resultant release of intracellular proteases, would explain why filamentous cultures exhibited much lower proteolytic activity than pelleted cultures.  相似文献   
88.
Multiple paternity is an important characteristic of the genetic mating system and common across a wide range of taxa. Multiple paternity can increase within‐population genotypic diversity, allowing selection to act on a wider spectre of genotypes, and potentially increasing effective population size. While the genetic mating system has been studied in many species with active mating behavior, little is known about multiple paternity in sessile species releasing gametes into the water. In freshwater mussels, males release sperm into the water, while eggs are retained and fertilized inside the female (spermcast mating). Mature parasitic glochidia are released into the water and attach to the gills of fish where they are encapsulated until settling in the bottom substrate. We used 15 microsatellite markers to detect multiple paternity in a wild population of the freshwater pearl mussel (Margaritifera margaritifera). We found multiple paternity in all clutches for which more than two offspring were genotyped, and numbers of sires were extremely high. Thirty‐two sires had contributed to the largest clutch (43 offspring sampled). This study provides the first evidence of multiple paternity in the freshwater pearl mussel, a species that has experienced dramatic declines across Europe. Previous studies on other species of freshwater mussels have detected much lower numbers of sires. Multiple paternity in freshwater pearl mussels may be central for maintaining genetic variability in small and fragmented populations and for their potential to recover after habitat restoration and may also be important in the evolutionary arms race with their fish host with a much shorter generation time.  相似文献   
89.
 A cytoplasmic male-sterility system has been developed in mustard (Brassica juncea) following repeated backcrossings of the somatic hybrid Moricandia arvensis (2n=28, MM)+B. juncea (2n=36, AABB), carrying mitochondria and chloroplasts from M. arvensis, to Brassica juncea. Cytoplasmic male-sterile (CMS) plants are similar to normal B. juncea; however, the leaves exhibit severe chlorosis resulting in delayed flowering. Flowers are normal with slender, non-dehiscent anthers and excellent nectaries. CMS plants show regular meiosis with pollen degeneration occurring during microsporogenesis. Female fertility was normal. Genetic information for fertility restoration was introgressed following the development of a M. arvensis monosomic addition line on CMS B. juncea. The additional chromosome paired allosyndetically with one of the B. juncea bivalents and allowed introgression. The putative restorer plant also exhibited severe chlorosis similar to CMS plants but possessed 89% and 73% pollen and seed fertility, respectively, which subsequently increased to 96% and 87% in the selfed progeny. The progeny of the cross of CMS line with the restorer line MJR-15, segregated into 1 fertile : 1 sterile. The CMS (Moricandia) B. juncea, the restorer (MJR-15), and fertility restored F1 plants possess similar cytoplasmic organellar genomes as revealed by ‘Southern’ analysis. Received: 17 September 1997 / Accepted: 18 February 1998  相似文献   
90.
In animal‐pollinated plants, both the spatial distribution of flowering individuals and the number of flowers that an individual displays affect pollen deposition rates and female reproductive success. Heterostylous species are likely to be particularly sensitive to the contingencies of spatial distribution, as they are reproductively subdivided into distinct mating groups, which usually exhibit self‐ and intra‐morph incompatibility and differ in floral morphology. In this paper, we explore the joint effects of both spatial distribution of potential mates and floral display size on morph‐specific pollen deposition rates and seed set patterns in two natural populations of Pulmonaria officinalis, a distylous species with a weak self‐incompatibility system. Both total stigmatic pollen load and the proportion of legitimate pollen decreased with increasing spatial isolation. Legitimate (intermorph) pollen transfer was, however, asymmetric and decreased more rapidly with decreasing proximity to a compatible legitimate mating partner in the S‐morph than in the L‐morph. Total stigmatic pollen loads per flower increased with increasing floral display size, indicating that large plants are disproportionately more visited than smaller individuals. However, because legitimate pollen deposition decreased with increasing floral display size, these results also suggest that larger numbers of flowers increase the degree of geitonogamous pollination. In both the L‐ and S‐morph, seed set significantly decreased with increasing isolation from a legitimate mating partner, but in the L‐morph seed set was less dependent on the spatial distribution of the S‐morph. In addition, seed set significantly increased with floral display size in the L‐morph, but not in the S‐morph. These findings indicate that the spatial distribution of potential mates and variation in floral display size may cause morph‐specific differences in pollen deposition rates and female reproductive success.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号