首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6759篇
  免费   178篇
  国内免费   225篇
  2023年   52篇
  2022年   53篇
  2021年   63篇
  2020年   88篇
  2019年   118篇
  2018年   163篇
  2017年   73篇
  2016年   95篇
  2015年   94篇
  2014年   327篇
  2013年   514篇
  2012年   221篇
  2011年   318篇
  2010年   220篇
  2009年   278篇
  2008年   309篇
  2007年   330篇
  2006年   274篇
  2005年   286篇
  2004年   246篇
  2003年   224篇
  2002年   168篇
  2001年   136篇
  2000年   102篇
  1999年   151篇
  1998年   128篇
  1997年   112篇
  1996年   118篇
  1995年   114篇
  1994年   129篇
  1993年   92篇
  1992年   110篇
  1991年   92篇
  1990年   96篇
  1989年   111篇
  1988年   85篇
  1987年   94篇
  1986年   87篇
  1985年   102篇
  1984年   135篇
  1983年   80篇
  1982年   106篇
  1981年   84篇
  1980年   71篇
  1979年   69篇
  1978年   66篇
  1977年   48篇
  1976年   43篇
  1974年   24篇
  1973年   27篇
排序方式: 共有7162条查询结果,搜索用时 46 毫秒
121.
Stromal-vascular cells from rats and pigs were isolated from adipose tissue and used to measure preadipocyte proliferation and differentiation. Cells from rats and pigs were grown in either 2.5% pig serum or 2.5% rat serum. Cells were either supplemented or unsupplemented with insulin after five days of growth in culture. In these cultures, pig fat cells developed as discrete clusters while rat fat cells developed as loose clusters or as individual cells. Rat cells had greater levels of sn-glycerol phosphate dehydrogenase activity compared to pig cells. Rat serum increased soluble protein in plated cells when compared to cells grown in pig serum. Pig serum increased glycerol phosphate dehydrogenase specific activity when compared to rat serum. In this system, there was no response to insulin. The cells grown in rat serum did not resemble adipocytes in regard to the presence of large lipid droplets (oil red 0 staining). These results demonstrate that rat and pig stromal-vascular cells in culture are morphologically different. Cells from both species, however, responded similarly to sera from either species showing that cells from rats and pigs responded to the growth and differentiation factors present in these sera.Mention of a trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   
122.
The objective of this study was to determine whether administration of dichloroacetate (DCA), an activator of pyruvate dehydrogenase (PDH), improves recovery of energy metabolites following transient cerebral ischemia. Gerbils were pretreated with DCA, and cerebral ischemia was produced using bilateral carotid artery occlusion for 20 min, followed by reperfusion up to 4 h. DCA had no effect on the accumulation of lactic acid and the decrease in ATP and phosphocreatine (PCr) during the 20-min insult, nor on the recovery of these metabolites measured at 20 and 60 min reperfusion. However, at 4 h reperfusion, levels of ATP and PCr were significantly higher in DCA-treated animals than in controls, as PCr exhibited a secondary decrease in caudate nucleus of control animals. PDH was markedly inhibited at 20 min reperfusion in both groups, but was reactivated to a greater extent in DCA-treated animals at 60 min and 4 h reperfusion. These results demonstrate that DCA had no effect on the initial recovery of metabolites following transient ischemia. However, later in reperfusion, DCA enhanced the postischemic reactivation of PDH and prevented the secondary failure of energy metabolism in caudate nucleus. Thus, inhibition of PDH may limit the recovery of energy metabolism following cerebral ischemia.  相似文献   
123.
To further elucidate the molecular basis of the selective damage to various brain regions by thiamin deficiency, changes in enzymatic activities were compared to carbohydrate flux through various pathways from vulnerable (mammillary bodies and inferior colliculi) and nonvulnerable (cochlear nuclei) regions after 11 or 14 days of pyrithiamin-induced thiamin deficiency. After 11 days,large decreases (–43 to –59%) in transketolase (TK) occurred in all 3 regions; 2-ketoglutarate dehydrogenase (KGDHC) declined (–45%), but only in mammillary bodies; pyruvate dehydrogenase (PDHC) was unaffected. By day 14, TK remained reduced by 58%–66%; KGDHC was now reduced in all regions (–48 to –55%); PDHC was also reduced (–32%), but only in the mammillary bodies. Thus, the enzyme changes did not parallel the pathological vulnerability of these regions to thiamin deficiency.14CO2 production from14C-glucose labeled in various positions was utilized to assess metabolic flux. After 14 days, CO2 production in the vulnerable regions declined severely (–46 to 70%) and approximately twice as much as those in the cochlear nucleus. Also by day 14, the ratio of enzymatic activity to metabolic flux increased as much as 56% in the vulnerable regions, but decreased 18 to 30% in the cochlear nuclei. These differences reflect a greater decrease in flux than enzyme activities in the two vulnerable regions. Thus, selective cellular responses to thiamin deficiency can be demonstrated ex vivo, and these changes can be directly related to alterations in metabolic flux. Since they cannot be related to enzymatic alterations in the three regions, factors other than decreases in the activity of these TPP-dependent enzymes must underlie selective vulnerability in this model of thiamin deficiency.Abbreviations KGDHC 2-ketoglutarate dehydrogenase complex EC 1.2.4.2., EC 2.3.1.61, EC 1.6.4.3. - PDHC pyruvate dehydrogenase complex EC 1.2.4.2., EC 2.3.1.12, EC 1.6.4.3 - TK transketolase (EC 2.2.1.1) - TPP thiamin pyrophosphate  相似文献   
124.
We investigated the effect of rat interferon-/ (IFN) on the expression of glycerol phosphate dehydrogenase (E.C.1.1.1.8; GPDH), in both C6 cells and pure cultures of oligodendrocytes. IFNs are naturally produced inhibitors of cell growth that can also affect differentiated cell functions. GPDH is a biochemical marker for oligodendrocytes and is known to be developmentally regulated and steroid inducible. GPDH activity is induced by hydrocortisone (HC) 3.5 fold in C6 cells and 5 fold in oligodendrocytes compared to untreated cultures. A pretreatment of these cells with 75 U/ml of rat IFN-/ resulted in an inhibition of the HC induction of GPDH enzymatic activity by 50% and 40% in C6 cells and oligodendrocytes respectively. We also found that IFN impaired the accumulation of GPDH mRNA in both cell types. These results demonstrate that IFNs are capable of modifying the cellular response to hormones in cells of neuroepithelial origin, and suggest the possibility that IFNs may be able to influence the development and function of the brain.Special issue dedicated to Dr. Paola S. Timiras  相似文献   
125.
Abstract Cell-free extracts of the photosynthetic eubacterium Rhodomicrobium vannielii contained both NADP and NAD-linked isocitrate dehydrogenase activities. Apparent K m values of 12 μM for NADP, 0.75 mM for NAD, 9.3 μM for isocitrate (NADP utilising) and 8.2 μM for isocitrate (NAD utilising) were determined in such extracts. Four lines of evidence indicated that one enzyme was responsible for the two activities; (i) non-additivity of reaction rates in the presence of both NADP and NAD (ii) the presence of one band which stained for activity with both cofactors on non-denaturing polyacrylamide gels (iii) identical heat inactivation kinetics for both activities (iv) co-elution of both activities after ion-exchange and hydrophobic interaction chromatography. This is the first report of a eubacterial isocitrate dehydrogenase with dual cofactor specificity.  相似文献   
126.
The kinetics of NADH oxidation by the outer membrane electron transport system of intact beetroot (Beta vulgaris L.) mitochondria were investigated. Very different values for Vmax and the Km for NADH were obtained when either antimycin A-insensitive NADH-cytochrome c activity (Vmax= 31 ± 2.5 nmol cytochrome c (mg protein)?1 min?1; Km= 3.1 ± 0.8 μM) or antimycin A-insensitive NADH-ferricyanide activity (Vmax= 1.7 ± 0.7 μmol ferricyanide (mg protein)?1 min?1; Km= 83 ± 20 μM) were measured. As ferricyanide is believed to accept electrons closer to the NADH binding site than cytochrome c, it was concluded that 83 ± 20 μM NADH represented a more accurate estimate of the binding affinity of the outer membrane dehydrogenase for NADH. The low Km determined with NADH-cytochrome c activity may be due to a limitation in electron flow through the components of the outer membrane electron transport chain. The Km for NADH of the externally-facing inner membrane NADH dehydrogenase of pea leaf (Pisum sativum L. cv. Massey Gem) mitochondria was 26.7 ± 4.3 μM when oxygen was the electron acceptor. At an NADH concentration at which the inner membrane dehydrogenase should predominate, the Ca2+ chelator, ethyleneglycol-(β-aminoethylether)-N,N,-tetraacetic acid (EGTA), inhibited the oxidation of NADH through to oxygen and to the ubiquinone-10 analogues, duroquinone and ubiquinone-1, but had no effect on the antimycin A-insensitive ferricyanide reduction. It is concluded that the site of action of Ca2+ involves the interaction of the enzyme with ubiquinone and not with NADH.  相似文献   
127.
Sorbitol dehydrogenase (EC 1.1.1.14) was isolated from bovine brain and purified 3,000-fold to apparent homogeneity, as judged by polyacrylamide gel electrophoresis. The purified enzyme had a specific activity of 36 units/mg of protein; a molecular weight of 39,000 for each of the four identical subunits and 155,000 for the intact enzyme were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel exclusion chromatography, respectively. The presence of one Zn2+ per subunit was confirmed by atom absorption spectroscopy; inactivation of the enzyme by metal-chelating agents points to the essential role that Zn2+ plays in the catalytically competent enzyme. The enzyme is also inactivated by thiol-blocking reagents; with respect to inactivation by sodium pyrophosphate, sorbitol dehydrogenase is different from closely related alcohol dehydrogenase.  相似文献   
128.
129.
Isozyme analysis ofl-alanine:2-oxoglutarate aminotransferase (ALT) in maize indicates that there are three genes encoding this enzyme activity. Two of the gene products interact with each other to form heterodimers, while the third gene product does not interact with the other two. Another isozyme that appears after gel electrophoresis and ALT staining is shown to be glutamate dehydrogenase-1. Anaerobic treatment does not result in increased ALT levels, indicating that the previously reported increase in alanine levels caused by this treatment may be due to increases in the level of pyruvate, a substrate of ALT.D. A. Russell was partially supported by a graduate student fellowship from the Division of Biology and Biomedical Sciences, Washington University. V. M. Peschke was partially supported by a postdoctoral fellowship from Monsanto. This research was supported by NIH Grant R01 GM34740.  相似文献   
130.
A series of amphiphilic polymethylenecarboxymaleimides has been synthesized for use as sulfhydryl reagents applicable to membrane proteins. Physical properties of the compounds which are relevant to their proposed mode of action have been determined. By comparing rates of reaction in aqueous and aprotic solvents, the compounds have been shown to react exclusively with the thiolate ion. The effects of the reagents on three membrane-associated proteins are reported, and in two cases a comparative study has been made of the effects on the proteins in the absence of membranes. A mechanism is proposed whereby the reagents are anchored at the lipid/water interface by the negatively charged carboxyl group, thus siting the reactive maleimide in a plane whose depth is defined by the length of the reagent. Supporting evidence for this model is provided by the inability of the reagents to traverse membranes, and variation of their inhibitory potency with chain length when the proteins are embedded in the membrane, but not when extracted into solution. As examples of general use of the reagents to probe sulfhydryl groups in membrane proteins, the reagents have been used to (a) determine the depths in the membrane at which two populations of sulfhydryl groups occur in the mitochondrial phosphate transporter; (b) locate a single sulfhydryl associated with the active site ofD--hydroxybutyrate dehydrogenase in the inner mitochondrial membrane; (c) examine sulfhydryl groups in theD-3-glyceraldehyde phosphate dehydrogenase associated with the human red blood cell membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号