首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   14篇
  国内免费   13篇
  2023年   4篇
  2022年   5篇
  2021年   6篇
  2020年   10篇
  2019年   7篇
  2018年   9篇
  2017年   3篇
  2015年   7篇
  2014年   15篇
  2013年   26篇
  2012年   11篇
  2011年   16篇
  2010年   11篇
  2009年   9篇
  2008年   14篇
  2007年   14篇
  2006年   14篇
  2005年   14篇
  2004年   15篇
  2003年   9篇
  2002年   18篇
  2001年   16篇
  2000年   8篇
  1999年   14篇
  1998年   7篇
  1997年   9篇
  1996年   9篇
  1995年   4篇
  1994年   10篇
  1993年   10篇
  1992年   5篇
  1991年   5篇
  1990年   14篇
  1989年   9篇
  1988年   10篇
  1987年   8篇
  1986年   6篇
  1985年   13篇
  1984年   7篇
  1983年   5篇
  1982年   3篇
  1981年   7篇
  1980年   5篇
  1979年   3篇
  1978年   7篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1974年   6篇
  1973年   9篇
排序方式: 共有464条查询结果,搜索用时 171 毫秒
71.
Metabolism of glutamate, the primary excitatory neurotransmitter in brain, is complex and of paramount importance to overall brain function. Thus, understanding the regulation of enzymes involved in formation and disposal of glutamate and related metabolites is crucial to understanding glutamate metabolism. Glutamate dehydrogenase (GDH) is a pivotal enzyme that links amino acid metabolism and TCA cycle activity in brain and other tissues. The allosteric regulation of GDH has been extensively studied and characterized. Less is known about the influence of lipid modifications on GDH activity, and the participation of GDH in transient heteroenzyme complexes (metabolons) that can greatly influence metabolism by altering kinetic parameters and lead to channeling of metabolites. This review summarizes evidence for palmitoylation and acylation of GDH, information on protein binding, and information regarding the participation of GDH in transient heteroenzyme complexes. Recent studies suggest that a number of other proteins can bind to GDH altering activity and overall metabolism. It is likely that these modifications and interactions contribute additional levels of regulation of GDH activity and glutamate metabolism.  相似文献   
72.
73.
It is widely recognized that the nature and characteristics of transport across eukaryotic membranes are so complex as to defy intuitive understanding. In these circumstances, quantitative mathematical modeling is an essential tool, both to integrate detailed knowledge of individual transporters and to extract the properties emergent from their interactions. As the first, fully integrated and quantitative modeling environment for the study of ion transport dynamics in a plant cell, OnGuard offers a unique tool for exploring homeostatic properties emerging from the interactions of ion transport, both at the plasma membrane and tonoplast in the guard cell. OnGuard has already yielded detail sufficient to guide phenotypic and mutational studies, and it represents a key step toward ‘reverse engineering’ of stomatal guard cell physiology, based on rational design and testing in simulation, to improve water use efficiency and carbon assimilation. Its construction from the HoTSig libraries enables translation of the software to other cell types, including growing root hairs and pollen. The problems inherent to transport are nonetheless challenging, and are compounded for those unfamiliar with conceptual ‘mindset’ of the modeler. Here we set out guidelines for the use of OnGuard and outline a standardized approach that will enable users to advance quickly to its application both in the classroom and laboratory. We also highlight the uncanny and emergent property of OnGuard models to reproduce the ‘communication’ evident between the plasma membrane and tonoplast of the guard cell.  相似文献   
74.
The presence of peroxisomes in olive (Olea europaea L.) fruits and different antioxidant enzymes occurring in this plant tissue is reported for the first time. Ultrastructural analysis showed that olive cells were characterized by the presence of large vacuoles and lipid drops. Plastids, mitochondria and peroxisomes were placed near the cell wall, showing some type of association with it. Olive fruit peroxisomes were purified by sucrose density-gradient centrifugation, and catalase, glutathione reductase and ascorbate peroxidase were found in peroxisomes. In olive fruit tissue the presence of a battery of antioxidant enzymes was demonstrated, including catalase, four superoxide dismutase isozymes (mainly an Fe-SOD plus 2 Cu,Zn-SOD and a Mn-SOD), all the enzymes of the ascorbate–glutathione cycle, reduced and oxidized glutathione, ascorbate, and four NADPH-recycling dehydrogenases. The knowledge of the full composition of antioxidants (enzymatic and non-enzymatic) in olive fruits is crucial to be able to understand the processes regulating the antioxidant composition of olive oil.  相似文献   
75.
76.
Autophagy is essential for successful white adipocyte differentiation but the data regarding the timing and relevance of autophagy action during different phases of adipogenesis are limited.  相似文献   
77.
吴信忠  李树华 《动物学报》1990,36(2):149-156
本文采用Disc-PAGE电泳,首次对我国独有的斯氏并殖吸虫(Paragonimus skrjabini Chen,1959)成虫、童虫、囊蚴的乳酸脱氢酶(以下简称LDH)、苹果酸脱氢酶(以下简称MDH)和酯酶(以下简称EST)同工酶进行了研究。 在成虫、童虫、囊蚴间,LDH、MDH、EST同工酶在酶带数、排列型式、Rf值、相对活性和优势酶带的位置都存在差异。 根据虫体和宿主组织同工酶谱的不同,可以认为是本虫本身所具有。 同工酶作为其分类指标时,不仅要比较不同虫种成虫稳定的同工酶谱,也要比较同工酶在个体发育型式间的差异。  相似文献   
78.
苹果酸合酶是乙醛酸循环的关键酶之一。E.coli中苹果酸合酶A(malate synthase A,MSA)由aceB基因编码。根据E.coli基因组序列设计引物,利用PCR技术扩增aceB基因,并将其克隆入pET-29b(+),构建了重组表达质粒pET-MSA。经IPTG诱导,MSA在E.coliRosetta(DE3)中获得高效表达。纯化的MSA蛋白的分子量大小约为60 kDa,最适反应pH值和最适温度分别是pH值8.0、30℃。纯化的蛋白质在Mg2+存在时才能发挥最大的活性,其对乙酰辅酶A的Km和Vmax分别是8.07μM和3.6μM/min。此外构建了MSA和苹果酸合酶G(MSG)基因敲除菌株MG::ΔaceB和MG::ΔaceBΔglcB。研究发现缺少MSA的E.coli突变菌株在乙酸中的生长速率要比野生型菌株慢很多,表明MSA对大肠杆菌在乙酸中的生长起着重要作用。MSG虽然能部分补偿MSA的作用,但是包含MSA的乙醛酸旁路是更有效的乙醛酸代谢途径。  相似文献   
79.
反应分离耦合技术生产L-苹果酸工艺过程的优化研究   总被引:2,自引:0,他引:2  
运用生物反应分离耦合原理,以富马酸钙为底物,采用游离延胡索酸酶,直接转化生产苹果酸钙。该法相对目前广泛采用的包埋式固定化方法具有工艺流程短、操作简便、转化率、收率高等特点,研究结果表明,转化温度为40℃,PH为7.0-7.5时,每升延胡索酸酶液能在20-28h间将3.2kg的富马酸钙转化生产成苹果酸钙,转化率高达99.9%,富马酸在产品中的残留在0.1%左右,产品符合美国药典标准,成本与化学合成法生产的DL-苹果酸相当。  相似文献   
80.
基于产琥珀酸重组大肠杆菌E.coli B0013-1050的琥珀酸合成途径,利用Red同源重组技术结合Xer/dif重组系统敲除富马酸酶基因fumB、fumC,苹果酸酶基因maeB,构建L-苹果酸合成途径,最终得到重组大肠杆菌E.coli2030,该菌株在15 L发酵罐中,产L-苹果酸12.5 g/L,葡萄糖-苹果酸转化率为52.1%,同时对发酵产物中主要杂酸丙酮酸和琥珀酸的生产原因进行了初步的探讨与分析。为进一步提高L-苹果酸的转化率,整合表达来源于黄曲霉的苹果酸脱氢酶基因,构建重组菌E.coli 2040,在15 L发酵罐中产L-苹果酸14 g/L,葡萄糖-苹果酸转化率提高到60.3%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号