首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   14篇
  国内免费   13篇
  2023年   4篇
  2022年   5篇
  2021年   6篇
  2020年   10篇
  2019年   7篇
  2018年   9篇
  2017年   3篇
  2015年   7篇
  2014年   15篇
  2013年   26篇
  2012年   11篇
  2011年   16篇
  2010年   11篇
  2009年   9篇
  2008年   14篇
  2007年   14篇
  2006年   14篇
  2005年   14篇
  2004年   15篇
  2003年   9篇
  2002年   18篇
  2001年   16篇
  2000年   8篇
  1999年   14篇
  1998年   7篇
  1997年   9篇
  1996年   9篇
  1995年   4篇
  1994年   10篇
  1993年   10篇
  1992年   5篇
  1991年   5篇
  1990年   14篇
  1989年   9篇
  1988年   10篇
  1987年   8篇
  1986年   6篇
  1985年   13篇
  1984年   7篇
  1983年   5篇
  1982年   3篇
  1981年   7篇
  1980年   5篇
  1979年   3篇
  1978年   7篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1974年   6篇
  1973年   9篇
排序方式: 共有464条查询结果,搜索用时 296 毫秒
21.
段晓  李伟  乔友备  范黎  吴红 《现代生物医学进展》2013,13(14):2625-2628,2621
目的:为构建聚合物胶束药物运载体系,制备嵌段共聚物聚乙二醇-聚苹果酸苄基酯载药胶束并测定其性质。方法:以L-天冬氨酸为原料,重氮化、环化后经开环聚合得到聚苹果酸苄基酯。氨基聚乙二醇通过酰胺键连接到β-聚苹果酸苄基酯上形成两亲性嵌段共聚物,喜树碱做药物模型制备载药胶束。动态光散射法测定胶束粒径、评价胶束稳定性,高效液相法测定喜树碱载药率和包封率,芘荧光法与动态光散射法测定临界胶束浓度。结果:喜树碱包封率72%,载药率6%,临界胶束浓度为40μg.mL-1。随着聚苹果酸苄基酯分子量减小,胶束稳定性增强。结论:聚乙二醇-聚苹果酸苄基酯在疏水链/亲水链分子量比值为2-4时在水中可自组装形成纳米胶束,可作为性能优良的聚合物药物载体。  相似文献   
22.
Barley is described to mostly use sucrose for night carbon requirements. To understand how the transient carbon is accumulated and utilized in response to cold, barley plants were grown in a combination of cold days and/or nights. Both daytime and night cold reduced growth. Sucrose was the main carbohydrate supplying growth at night, representing 50–60% of the carbon consumed. Under warm days and nights, starch was the second contributor with 26% and malate the third with 15%. Under cold nights, the contribution of starch was severely reduced, due to an inhibition of its synthesis, including under warm days, and malate was the second contributor to C requirements with 24–28% of the total amount of carbon consumed. We propose that malate plays a critical role as an alternative carbon source to sucrose and starch in barley. Hexoses, malate, and sucrose mobilization and starch accumulation were affected in barley elf3 clock mutants, suggesting a clock regulation of their metabolism, without affecting growth and photosynthesis however. Altogether, our data suggest that the mobilization of sucrose and malate and/or barley growth machinery are sensitive to cold.  相似文献   
23.
24.
In this study, we analyzed the toxic effect of Ni during the development of wheat shoots. Typical developmental alterations in carbon metabolism-related parameters reflecting changes associated with the transition of the seedlings from heterotrophic to autotrophic metabolism were observed in the control shoots between the 1st and the 4th days. Adverse effects of 50 and 100 μM Ni became evident starting from the 4th day of growth on the metal-containing media. We found that Ni-induced stimulation of phosphoenolpyruvate carboxylase (PEPC) activity coincided with decrease in the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) level and with declines in net photosynthetic rate (PN) and stomatal conductance (gs). Application of Ni resulted in increased activities of several dehydrogenases: glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), isocitrate dehydrogenase (NADP-ICDH) and malate dehydrogenase (NADH-MDH). In contrast, the activities of malic enzymes (NADP-ME and NAD-ME) decreased due to Ni stress. Treatment with Ni led to accumulation of glucose and declined concentration of sucrose as well as considerable increases in concentrations of malic and citric acids. Our results indicate that Ni stress redirects the carbon metabolism of developing wheat shoots to provide carbon skeletons for synthesis of amino acids and organic acids as well as to supply reducing power to sustain normal metabolic processes and to support defense mechanisms against oxidative stress.  相似文献   
25.
26.
苹果酸广泛应用于食品、化工行业。文中通过在酿酒酵母内敲除丙酮酸脱羧酶PDC1,并通过构建胞质内还原TCA的路径,即超表达丙酮酸羧化酶和苹果酸脱氢酶,成功地实现了苹果酸的生产。在野生型菌株中基本检测不到苹果酸的生成,而在工程菌株,苹果酸发酵浓度达到了45 mmol /L,同时副产物乙醇的产量也降低了18%。进一步通过发酵调控提高第二信使Ca2+的浓度使苹果酸的产量提高了7 %,在此基础上提高丙酮酸羧化酶的辅酶生物素浓度,使苹果酸的产量达到52.5 mmol /L,较原始菌株提高了16%。  相似文献   
27.
This study investigated the effects of malate supplementation on blood acid-base balance and serum lactate levels in a 137-day feedlot experiment with bull calves. Animals were allotted to one of two experimental groups: (1) A control group (no supplementation), and (2) a group receiving a salt of DL-malic acid. Blood pH, pCO2, HCO3 ?, base excess, serum L-lactate and productivity parameters were evaluated. Our data reveal that under the conditions of the present experiment malate supplementation did not have any significant effect on productivity parameters by comparison with non-supplemented animals. As regards acid-base balance, no significant effects attributable only to malate were observed. In conclusion, the time-course and the overall means of serum L-lactate for both groups in both growing and finishing periods (0.44 ± 0.04 mmol/l and 0.39 ± 0.02 mmol/l, respectively, for control animal; and 0.54 ± 0.03 mmol/l and 0.49 ± 0.01 mmol/l, respectively, for supplemented animals) suggests that malate does not have any beneficial effects in animals fed a diet of similar characteristics to that given in this study.  相似文献   
28.
Malate valves act as powerful systems for balancing the ATP/NAD(P)H ratio required in various subcellular compartments in plant cells. As components of malate valves, isoforms of malate dehydrogenases (MDHs) and dicarboxylate translocators catalyse the reversible interconversion of malate and oxaloacetate and their transport. Depending on the co‐enzyme specificity of the MDH isoforms, either NADH or NADPH can be transported indirectly. Arabidopsis thaliana possesses nine genes encoding MDH isoenzymes. Activities of NAD‐dependent MDHs have been detected in mitochondria, peroxisomes, cytosol and plastids. In addition, chloroplasts possess a NADP‐dependent MDH isoform. The NADP‐MDH as part of the ‘light malate valve’ plays an important role as a poising mechanism to adjust the ATP/NADPH ratio in the stroma. Its activity is strictly regulated by post‐translational redox‐modification mediated via the ferredoxin‐thioredoxin system and fine control via the NADP+/NADP(H) ratio, thereby maintaining redox homeostasis under changing conditions. In contrast, the plastid NAD‐MDH (‘dark malate valve’) is constitutively active and its lack leads to failure in early embryo development. While redox regulation of the main cytosolic MDH isoform has been shown, knowledge about regulation of the other two cytosolic MDHs as well as NAD‐MDH isoforms from peroxisomes and mitochondria is still lacking. Knockout mutants lacking the isoforms from chloroplasts, mitochondria and peroxisomes have been characterised, but not much is known about cytosolic NAD‐MDH isoforms and their role in planta. This review updates the current knowledge on MDH isoforms and the shuttle systems for intercompartmental dicarboxylate exchange, focusing on the various metabolic functions of these valves.  相似文献   
29.
30.
AIMS: Physiological comparison of two indigenous Oenococcus oeni strains, U1 and F3 isolated in the same area (Valpolicella, Italy) in order to select a performant starter for MLF in wine. METHODS AND RESULTS: Growth rate, sugar and malate metabolism in FT80 media at pH 5.3 and 3.5 were analysed. The amount of total protein synthesized and the level of expression of the small Hsp Lo18 were evaluated by radiolabelling and immunodetection experiments after heat (42 degrees C), acid (pH 3.5) and ethanol (12% v/v) stresses. Strain U1 showed significantly lower specific growth rate and growth yield in acid conditions than strain F3. However, strain U1 had a higher malate consumption capacity at pH 3.5 than strain F3, in relation with an higher malolactic activity determined on whole cells. Strain U1 exhibited about half the total protein synthesis level than strain F3, but both strains expressed Lo18 similarly. Evaluation of malolactic fermentation (MLF) performance by microvinification trials was carried out. Strain U1 was able to complete MLF, whereas strain F3 degraded malic acid partially when inoculated in Amarone wine. CONCLUSIONS: Considering its performances in microvinifications experiments, strain U1 could be a good candidate for malolactic starter as an alternative to deficient commercial starters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号