首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8430篇
  免费   789篇
  国内免费   1236篇
  10455篇
  2024年   25篇
  2023年   150篇
  2022年   169篇
  2021年   228篇
  2020年   296篇
  2019年   314篇
  2018年   271篇
  2017年   306篇
  2016年   337篇
  2015年   331篇
  2014年   331篇
  2013年   528篇
  2012年   345篇
  2011年   323篇
  2010年   317篇
  2009年   320篇
  2008年   394篇
  2007年   410篇
  2006年   402篇
  2005年   384篇
  2004年   344篇
  2003年   370篇
  2002年   317篇
  2001年   291篇
  2000年   255篇
  1999年   258篇
  1998年   222篇
  1997年   236篇
  1996年   201篇
  1995年   146篇
  1994年   144篇
  1993年   169篇
  1992年   162篇
  1991年   140篇
  1990年   134篇
  1989年   116篇
  1988年   137篇
  1987年   73篇
  1986年   61篇
  1985年   97篇
  1984年   81篇
  1983年   46篇
  1982年   51篇
  1981年   45篇
  1980年   46篇
  1979年   20篇
  1977年   25篇
  1975年   20篇
  1974年   18篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
Leaf age and larval performance of the leaf beetle Paropsis atomaria   总被引:1,自引:0,他引:1  
ABSTRACT.
  • 1 Larval performance of the leaf beetle Paropsis atomaria Oliver was determined for larvae raised on both new and mature leaves of Eucalyptus blakelyi Maiden. Larvae were transferred to mature leaves at different ages; control larvae stayed on new leaves through all instars.
  • 2 Only larvae reared on new leaves through the third instar survived to pupate on mature leaves; developmental time was prolonged by 20% and pupal weight was reduced by 50% in these larvae compared with larvae reared entirely on new leaves. Almost all larvae died when transferred to mature leaves as first, second or third instars.
  • 3 Low survival and slow development on mature leaves was mainly due to failure by larvae to feed. Larvae palpated leaves and could discriminate among leaf ages immediately, without biting into the leaf tissue.
  • 4 New leaves had higher concentrations of oil and tannins than old leaves, while there were no significant differences in nitrogen concentrations in the two types of leaves. Mature leaves were more than 3 times tougher than new leaves, in terms of g mm?2 of penetrometer force.
  • 5 In drought years E. blakelyi may not produce sufficient new leaves to supply specialist herbivores with their preferred food resource. We infer that drought years reduce P. atomaria larval performance significantly, and influence the population dynamics of the insect.
  相似文献   
22.
The host suitability of five of the most common weed species occurring in maize (Zea mays L.) fields in South Africa to Pratylenchus zeae was tested. Based on the number of nematodes per root unit, mealie crotalaria (Crotalaria sphaerocarpa) was a good host; goose grass (Eleusine indica), common pigweed (Amaranthus hybridus), and thorn apple (Datura stramonium) were moderate hosts; and khaki weed (Tagetes minuta) was a poor host. Only the root residues of khaki weed suppressed the P. zeae infestation of subsequently grown maize. When goose grass, khaki weed, and mealie crotalaria were grown in association with maize in soil infested with P. zeae, goose grass and khaki weed severely suppressed maize root development; this resulted in a low number of nematodes per maize root system and a high number of nematodes per maize root unit. Mealie crotalaria did not restrict maize root growth and did not affect nematode densities per maize root system or maize root unit. Special attention should be given to the control of mealie crotalaria, which is a good host for P. zeae, and goose grass, which, in addition to its ability to compete with maize, is also a suitable host for P. zeae.  相似文献   
23.
Fructan biosynthesis in excised leaves of Lolium temulentum L.   总被引:10,自引:10,他引:0  
  相似文献   
24.
Almond plants (Amygdalus communis L. cv. Garrigues) were grown in the field under drip irrigated and non irrigated conditions. Leaf water potential () and leaf conductance (g1) were determined at three different times of the growing season (spring, summer and autumn). The relationships between and g1 in both treatments showed a continuous decrease of g1 as decreased in spring and summer. Data from the autumn presented a threshold value of (approx. –2.7 MPa in dry treatment, and approx. –1.4 MPa in wet treatment) below which leaf conductance remained constant.  相似文献   
25.
Stomatal sensing of the environment   总被引:1,自引:0,他引:1  
The effects of environmental factors on stomatal behaviour are reviewed and the questions of whether photosynthesis and transpiration eontrol stomata or whether stomata themselves control the rates of these processes is addressed. Light affects stomata directly and indirectly. Light can act directly as an energy source resulting in ATP formation within guard cells via photophosphorylation, or as a stimulus as in the case of the blue light effects which cause guard cell H+ extrusion. Light also acts indirectly on stomata by affecting photosynthesis which influences the intercellular leaf CO2 concentration ( C i). Carbon dioxide concentrations in contact with the plasma membrane of the guard cell or within the guard cell acts directly on cell processes responsible for stomatal movements. The mechanism by which CO2 exerts its effect is not fully understood but, at least in part, it is concerned with changing the properties of guard cell plasma membranes which influence ion transport processes. The C i may remain fairly constant for much of the day for many species which is the result of parallel responses of stomata and photosynthesis to light. Leaf water potential also influences stomatal behaviour. Since leaf water potential is a resultant of water uptake and storage by the plant and transpirational water loss, any factor which affects these processes, such as soil water availability, temperature, atmospheric humidity and air movement, may indirectly affect stomata. Some of these factors, such as temperature and possibly humidity, may affect stomata directly. These direct and indirect effects of environmental factors interact to give a net opening response upon which is superimposed a direct effect of stomatal circadian rhythmic activity.  相似文献   
26.
27.
28.
Phosphorus availability was measured in soils under five cropping systems: alley cropping with Erythrina poeppigiana, alley cropping with Gliricidia sepium, sole cropping with Erythrina poeppigiana mulch applied, sole cropping with Gliricidia sepium mulch applied, sole cropping with no mulch. The following parameters were measured: 1) plant-available soil P assessed by P uptake of maize and bean bioassay plants; 2) phosphate desorbable by anion exchange resin; 3) adsorption of added P into isotopically exchangeable and non-exchangeable pools.In the bioassay, P uptake of beans declined in the order: mulched sole-cropped>unmulched sole-cropped>alley-cropped soils. For maize the relative uptake was: mulched sole-cropped>unmulched sole-cropped = alley-cropped soils. These results suggest trees had not incorporated a significant quantity of P into the system after seven years and, probably, there was a decrease in available soil P due to the sequestration of P in the tree biomass. Potentially resin-desorbable P was higher in alley-cropped and mulched sole-cropped soils than in unmulched sole-cropped soils. The adsorption and desorption of added P into and from exchangeable and non-exchangeable pools did not differ between alley-cropped and unmulched sole-cropped soils.Crop yield and crop N, P and K uptake were all higher in the alley crops than in the unmulched sole crop. The supply of P to the crop under alley cropping seems to be dependent on P cycled and released from the mulch. The P cycle in alley cropping appears to be self-sustaining at least under conditions of moderate P fertiliser input.  相似文献   
29.
Uta Holthaus  Klaus Schmitz 《Planta》1991,185(4):479-486
Indirect evidence for the site of stachyose biosynthesis has been provided by determining the occurrence and distribution of stachyose, raffinose and galactinol, the donor of the galactosyl moiety for stachyose synthesis, in Cucumis melo L. cv. Ranjadew. Studies of enzyme activities for the synthesis of these sugars and their distribution in different plant organs and isolates has led to the conclusion that stachyose is synthesized mainly in mature leaves and seeds. Nevertheless, stachyose-synthase activity varied with leaf age, the developmental stage of a plant, the growing season and the plant cultivar used. No stachyose or stachyose-synthase activity could be detected in isolated mesophyll protoplasts and chloroplasts, whereas both were found in a minor-vein-enriched fraction isolated from mature leaves. The conclusion that stachyose biosynthesis is associated with minor veins was confirmed by immunolocalization of the enzyme. Positive specific immunoreactivity of stachyose synthase with polyclonal anti-stachyose-synthase antibodies, labeled with protein A-gold, was detected in intermediary cells of leaf minor veins. The implication of this local synthesis of the main transport sugar for phloem loading in mature leaves of Cucumis melo is discussed.Abbreviation RUBPCase ribulose-1,5-bisphosphate carboxylase This work was supported by Deutsche Forschungsgemeinschaft. The excellent assistance of Ms. B. Müller in preparing the samples for electron microscopy is gratefully acknowledged. The authors thank Professor H.J. Schneider-Poetsch for anti-RuBPCase antibodies.  相似文献   
30.
Oreina cacaliae (Coleoptera, Chrysomelidae) produces in its elytral and pronotal defensive secretion seneciphylline N-oxide together with small amounts of another pyrrolizidine alkaloid tentatively identified as senecionine N-oxide. This is a strong departure from the chemical composition of the defensive secretions in related species, characterized by complex mixtures of cardenolides, synthesized by the beetles from cholesterol. It is suggested that O. cacaliae sequesters the alkaloids from its host-plant, Adenostyles leucophylla. Other specimens of O. cacaliae from far distant populations feeding on Senecio nemorensis, Petasites paradoxus or P. album also produced pyrrolizidine alkaloids, but not O. speciosissima feeding on the same food plants and producing cardenolides. In addition to pyrrolizidine alkaloids, O. cacaliae secretes ethanolamine, which is also found in all the cardenolide-producing species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号