首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4713篇
  免费   433篇
  国内免费   152篇
  5298篇
  2024年   23篇
  2023年   89篇
  2022年   105篇
  2021年   90篇
  2020年   140篇
  2019年   172篇
  2018年   202篇
  2017年   148篇
  2016年   140篇
  2015年   161篇
  2014年   279篇
  2013年   403篇
  2012年   149篇
  2011年   211篇
  2010年   232篇
  2009年   288篇
  2008年   280篇
  2007年   275篇
  2006年   261篇
  2005年   194篇
  2004年   147篇
  2003年   140篇
  2002年   116篇
  2001年   98篇
  2000年   49篇
  1999年   58篇
  1998年   82篇
  1997年   69篇
  1996年   67篇
  1995年   49篇
  1994年   56篇
  1993年   63篇
  1992年   40篇
  1991年   35篇
  1990年   21篇
  1989年   29篇
  1988年   25篇
  1987年   22篇
  1986年   24篇
  1985年   34篇
  1984年   41篇
  1983年   24篇
  1982年   45篇
  1981年   35篇
  1980年   20篇
  1979年   18篇
  1978年   11篇
  1977年   7篇
  1976年   7篇
  1974年   9篇
排序方式: 共有5298条查询结果,搜索用时 15 毫秒
31.
The effects of extreme phosphate (Pi) deficiency during growth on the contents of adenylates and pyridine nucleotides and the in vivo photochemical activity of photosystem II (PSII) were determined in leaves of Helianthus annuus and Zea mays grown under controlled environmental conditions. Phosphate deficiency decreased the amounts of ATP and ADP per unit leaf area and the adenylate energy charge of leaves. The amounts of oxidized pyridine nucleotides per unit leaf area decreased with Pi deficiency, but not those of reduced pyridine nucleotides. This resulted in an increase in the ratio of reduced to oxidized pyridine nucleotides in Pi-deficient leaves. Analysis of chlorophyll a fluorescence at room temperature showed that Pi deficiency decreased the efficiency of excitation capture by open PSII reaction centres (φe), the in vivo quantum yield of PSII photochemistry (φPSII) and the photochemical quenching co-efficient (qP), and increased the non-photochemical quenching co-efficient (qN) indicating possible photoinhibitory damage to PSII. Supplying Pi to Pi-deficient sunflower leaves reversed the long-term effects of Pi-deficiency on PSII photochemistry. Feeding Pi-sufficient sunflower leaves with mannose or FCCP rapidly produced effects on chlorophyll a fluorescence similar to long-term Pi-deficiency. Our results suggest a direct role of Pi and photophosphorylation on PSII photochemistry in both long-and short-term responses of photosynthetic machinery to Pi deficiency. The relationship between φPSII and the apparent quantum yield of CO2 assimilation determined at varying light intensity and 21 kPa O2 and 35 Pa CO2 partial pressures in the ambient air was linear in Pi-sufficient and Pi-deficient leaves of sunflower and maize. Calculations show that there was relatively more PSII activity per mole of CO2 assimilated by the Pi-deficient leaves. This indicates that in these leaves a greater proportion of photosynthetic electrons transported across PSII was used for processes other than CO2 reduction. Therefore, we conclude that in vivo photosynthetic electron transport through PSII did not limit photosynthesis in Pi-deficient leaves of sunflower and maize and that the decreased CO2 assimilation was a consequence of a smaller ATP content and lower energy charge which restricted production of ribulose, 1-5, bisphosphate, the acceptor for CO2.  相似文献   
32.
Wheat leaves were exposed to light treatments that excite preferentially Photosystem I (PS I) or Photosystem II (PS II) and induce State 1 or State 2, respectively. Simultaneous measurements of CO2 assimilation, chlorophyll fluorescence and absorbance at 820 nm were used to estimate the quantum efficiencies of CO2 assimilation and PS II and PS I photochemistry during State transitions. State transitions were found to be associated with changes in the efficiency with which an absorbed photon is transferred to an open PS II reaction centre, but did not correlate with changes in the quantum efficiencies of PS II photochemistry or CO2 assimilation. Studies of the phosphorylation status of the light harvesting chlorophyll protein complex associated with PS II (LHC II) in wheat leaves and using chlorina mutants of barley which are deficient in this complex demonstrate that the changes in the effective antennae size of Photosystem II occurring during State transitions require LHC II and correlate with the phosphorylation status of LHC II. However, such correlations were not found in maize leaves. It is concluded that State transitions in C3 leaves are associated with phosphorylation-induced modifications of the PS II antennae, but these changes do not serve to optimise the use of light absorbed by the leaf for CO2 assimilation.Abbreviations Fm, Fo, Fv maximal, minimal and variable fluorescence yields - Fm, Fv maximal and variable fluorescence yields in a light adapted state - LHC II light harvesting chlorophyll a/b protein complex associated with PS II - qP photochemical quenching - A820 light-induced absorbance change at 820 nm - PS I, PS II relative quantum efficiencies of PS I and PS II photochemistry - CO 2 quantum yield of CO2 assimilation  相似文献   
33.
A study was performed to investigate possible interactions by magnetic fields (MF) with the processes of initiation and promotion of chemically induced preneoplastic lesions in rat liver. Male Sprague-Dawley rats were subjected to a 70% partial hepatectomy followed after 24 h by i.p. injection of diethylnitrosamine (DENA) as a tumour initiator. Starting one week after the DENA-treatment phenobarbital (PB) was given to promote growth of enzymatically altered foci of liver cells. MF was applied immediately after the partial hepatectomy and continued until sacrifice after 12 weeks of PB exposure. Homogenous horizontal AC magnetic fields with a frequency of 50 Hz and flux densities of 0.5 μT or 0.5 mT were used. The rats coexposed with MF and DENA plus PB did not gain weight as much as the rats exposed to the chemical agents only. The MF-exposure also resulted in a slight reduction in size and numbers of the focal lesions. The results suggest an interaction of MF with the processes of chemical carcinogenesis either as a result of stress or depending on effects on the proliferation of preneoplastic cells. © 1993 Wiley-Liss, Inc.  相似文献   
34.
Abstract: Nuclear magnetic resonance (NMR) was used to study the metabolic pathways involved in the conversion of glucose to glutamate, γ-aminobutyrate (GABA), glutamine, and aspartate. d -[1-13C]Glucose was administered to rats intraperitoneally, and 6, 15, 30, or 45 min later the rats were killed and extracts from the forebrain were prepared for 13C-NMR analysis and amino acid analysis. The absolute amount of 13C present within each carbon-atom pool was determined for C-2, C-3, and C-4 of glutamate, glutamine, and GABA, for C-2 and C-3 of aspartate, and for C-3 of lactate. The natural abundance 13C present in extracts from control rats was also determined for each of these compounds and for N-acetylaspartate and taurine. The pattern of labeling within glutamate and GABA indicates that these amino acids were synthesized primarily within compartments in which glucose was metabolized to pyruvate, followed by decarboxylation to acetyl-CoA for entry into the tricarboxylic acid cycle. In contrast, the labeling pattern for glutamine and aspartate indicates that appreciable amounts of these amino acids were synthesized within a compartment in which glucose was metabolized to pyruvate, followed by carboxylation to oxaloacetate. These results are consistent with the concept that pyruvate carboxylase and glutamine synthetase are glia-specific enzymes, and that this partially accounts for the unusual metabolic compartmentation in CNS tissues. The results of our study also support the concept that there are several pools of glutamate, with different metabolic turnover rates. Our results also are consistent with the concept that glutamine and/or a tricarboxylic acid cycle intermediate is supplied by astrocytes to neurons for replenishing the neurotransmitter pool of GABA. However, a similar role for astrocytes in replenishing the transmitter pool of glutamate was not substantiated, possibly due to difficulties in quantitating satellite peaks arising from 13C-13C coupling.  相似文献   
35.
The solution structure of melanoma growth stimulating activity (MGSA) has been investigated using proton NMR spectroscopy. Sequential resonance assignments have been carried out, and elements of secondary structure have been identified on the basis of NOE, coupling constant, chemical shift, and amide proton exchange data. Long-range NOEs have established that MGSA is a dimer in solution. The secondary structure and dimer interface of MGSA appear to be similar to those found previously for the homologous chemokine interleukin-8 [Clore et al. (1990) Biochemistry 29, 1689-1696]. The MGSA monomer contains a three stranded anti-parallel β-sheet arranged in a ‘Greek-key’ conformation, and a C-terininal -helix (residues 58 69).  相似文献   
36.
Calcium deficiency in zucchini (Cucurbita pepo L.) is associated with reduced growth and a reduced ability to transport auxin (Allan and Rubery, 1991, Planta 183, 604–612). An investigation of the effects of calcium-deficiency on zucchini hypocotyl cells was made using weak-acid uptake and 31P-nuclear-magneticresonance (31P-NMR) spectroscopy in vivo and in tissue extracts. Calcium-deficient tissue had the same cytoplasmic and vacuolar pHs as normal tissue when extracellular pH was near neutral. At acidic external pH the vacuolar pH was lower in deficient tissue. Adenine nucleotides were present predominantly as ATP in both control and calcium-deficient tissues. Addition of calcium to calcium-deficient tissue, under conditions which cause recovery of auxin transport induced no changes in the 31P-NMR spectra of deficient tissue. The content of mobile, phosphorylated metabolites was reduced in calcium-deficient tissue in comparison to control tissue. However, a substantial increase in the content of phosphorylcholine occurs in calcium-deficient tissues compared with controls; this may reflect changes in lipid turnover in calcium-stressed cells. We wish to thank Drs. Terry Moore and Jamie Vandenberg for technical assistance and Professor Peter Morris for providing the gated oxygen device. A.C.A. thanks the Cambridge Commonwealth Trust for a Prince of Wales Scholarship and the O.R.S. Awards Scheme for an award.  相似文献   
37.
This study evaluated the time courses of intracellular pH and the metabolism of phosphocreatine (PCr) and inorganic phosphate (P) at the onset of four exercise intensities and recoveries. Non-invasive evaluation of continuous changes in phosphorus metabolites has become possible using31P-nuclear magnetic resonance spectroscopy (31P-MRS). After measurements at rest, six healthy male subjects performed 4 min of femoral flexion exercise at intensities of 0 (loadless), 10, 20 and 30 kg · m · min–1 in a 2.1 T superconducting magnet with a 67-cm bore. Measurements were continuously made during 5 min of recovery. During a series of rest-exercise-recovery procedures,31P-MRS were accumulated using 32 scans · spectrum–1 requiring 12.8 s each. At the onset of exercise, PCr decreased exponentially with a time constant of 27–32 s regardless of the exercise intensity. The time constant PCr resynthesis during recovery was about 27–40 s. The PCr kinetics were independent of exercise intensity. There were similar Pi kinetics at the onset of all types of exercise, while those of Pi recovery became significantly longer at the higher exercise intensities (P < 0.05). Furthermore, the intracellular pH indicated temporary alkalosis just at the onset of exercise, probably due to absorption of hydrogen ions by PCr hydrolysis, and then decrease at a point about 40%–50% of the preexercise PCr. The pH recovery time was longer than that for the Pi or PCr kinetics. By using a more efficient resolution system it was possible to obtain the phosphorus kinetics during exercise and to follow PCr resynthesis within the first few minutes of recovery. From our results it was concluded that in general the time course of PCr and Pi metabolism were unaffected by the exercise intensity, both at the onset of exercise and during recovery, with the exception of Pi recovery.  相似文献   
38.
The rates of change in intracellular pH during repeated exercise sessions with rest periods was determined by 31 phosphorus-nuclear magnetic resonance spectroscopy (31P-MRS). Five long-distance runners and six healthy male subjects as controls performed a 2-min femoral flexion at 20 kg · m · min–1 in a 2.1 T superconducting magnet with a 67-cm bore and repeated this exercise four times with 2-min rest periods intervening. In all cases during exercise the inorganic phosphate (Pi) peak split into two, the earlier increased rapidly (high-pH Pi) and the later (low-pH Pi) increased more slowly. The Pi peaks were separated by a fitting procedure using the least square mean method. The high-pH Pi area during exercise decreased as the number of repeated exercise periods increased, while the low-pH Pi area gradually increased. Although the total Pi area decreased exponentially during the recovery period, the high-pH Pi area decreased first and then the low-pH Pi area reduced gradually. The pH values were estimated from the chemical shift between the phosphocreatine peak and each split peak in the Pi. The high-pH in pooled data ranged from 6.6 to 7.0 during exercise and recovery, while the low pH decreased to 6.2 during exercise. As the number of exercise periods increased, each pH value gradually became less acidic, although there was a tendency to more acidity in the control subjects than in the long-distance runners. In conclusion, it was possible to obtain by non-invasive, continuous31P-MRS, a split pattern of Pi peaks during exercise and there were at least tow different intracellular pH values during exercise, suggesting that each Pi peak might be attributed to the types of muscle fibre recruited.  相似文献   
39.
Mitochondrial function declines with age, and many pathological processes in neurodegenerative diseases stem from this dysfunction when mitochondria fail to produce the necessary energy required. Photobiomodulation (PBM), long-wavelength light therapy, has been shown to rescue mitochondrial function in animal models and improve human health, but clinical uptake is limited due to uncertainty around efficacy and the mechanisms responsible. Using 31P magnetisation transfer magnetic resonance spectroscopy (MT-MRS) we quantify, for the first time, the effects of 670 nm PBM treatment on healthy ageing human brains. We find a significant increase in the rate of ATP synthase flux in the brain after PBM in a cohort of older adults. Our study provides initial evidence of PBM therapeutic efficacy for improving mitochondrial function and restoring ATP flux with age, but recognises that wider studies are now required to confirm any resultant cognitive benefits.  相似文献   
40.
We have used [2-13C]d-glucose and carbon-13 nuclear magnetic resonance (NMR) spectroscopy to investigate metabolic fluxes through the major pathways of glucose metabolism in intact human erythrocytes and to determine the interactions among these pathways under conditions that perturb metabolism. Using the method described, we have been able to measure fluxes through the pentose phosphate pathway, phosphofructokinase, the 2,3-diphosphoglycerate bypass, and phosphoglycerate kinase, as well as glucose uptake, concurrently and in a single experiment. We have measured these fluxes in normal human erythrocytes under the following conditions: (1) fully oxygenated; (2) treated with methylene blue; and (3) deoxygenated. This method makes it possible to monitor various metabolic effects of stresses in normal and pathological states. Not only has 13C-NMR spectroscopy proved to be a useful method for measuring in vivo flux through the pentose phosphate pathway, but it has also provided additional information about the cycling of metabolites through the non-oxidative portion of the pentose phosphate pathway. Our evidence from experiments with [1-13C]-, [2-13C]-, and [3-13C]d-glucoses indicates that there is an observable reverse flux of fructose 6-phosphate through the reactions catalyzed by transketolase and transaldolase, even in the presence of a net flux through the pentose phosphate pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号