首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2187篇
  免费   154篇
  国内免费   115篇
  2024年   7篇
  2023年   54篇
  2022年   88篇
  2021年   112篇
  2020年   112篇
  2019年   99篇
  2018年   100篇
  2017年   55篇
  2016年   54篇
  2015年   130篇
  2014年   131篇
  2013年   160篇
  2012年   62篇
  2011年   82篇
  2010年   55篇
  2009年   88篇
  2008年   83篇
  2007年   106篇
  2006年   86篇
  2005年   70篇
  2004年   63篇
  2003年   81篇
  2002年   81篇
  2001年   59篇
  2000年   45篇
  1999年   28篇
  1998年   29篇
  1997年   29篇
  1996年   23篇
  1995年   28篇
  1994年   20篇
  1993年   34篇
  1992年   24篇
  1991年   22篇
  1990年   18篇
  1989年   24篇
  1988年   20篇
  1987年   13篇
  1986年   12篇
  1985年   11篇
  1984年   11篇
  1983年   7篇
  1982年   7篇
  1981年   4篇
  1980年   8篇
  1979年   5篇
  1978年   6篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
排序方式: 共有2456条查询结果,搜索用时 31 毫秒
41.
42.
Abstract: Amyloid β-peptide (Aβ) is deposited as insoluble fibrils in the brain parenchyma and cerebral blood vessels in Alzheimer's disease (AD). In addition to neuronal degeneration, cerebral vascular alterations indicative of damage to vascular endothelial cells and disruption of the blood-brain barrier occur in AD. Here we report that Aβ25-35 can impair regulatory functions of endothelial cells (ECs) from porcine pulmonary artery and induce their death. Subtoxic exposures to Aβ25-35 induced albumin transfer across EC monolayers and impaired glucose transport into ECs. Cell death induced by Aβ25-35 was of an apoptotic form, characterized by DNA condensation and fragmentation, and prevented by inhibitors of macromolecular synthesis and endonucleases. The effects of Aβ25-35 were specific because Aβ1-40 also induced apoptosis in ECs with the apoptotic cells localized to the microenvironment of Aβ1-40 aggregates and because astrocytes did not undergo similar changes after exposure to Aβ25-35. Damage and death of ECs induced by Aβ25-35 were attenuated by antioxidants, a calcium channel blocker, and a chelator of intracellular calcium, indicating the involvement of free radicals and dysregulation of calcium homeostasis. The data show that Aβ induces increased permeability of EC monolayers to macromolecules, impairs glucose transport, and induces apoptosis. If similar mechanisms are operative in vivo, then Aβ and other amyloidogenic peptides may be directly involved in vascular EC damage documented in AD and other disorders that involve vascular amyloid accumulation.  相似文献   
43.
Abstract: Activation of immediate early gene expression is a key event in stress-induced neuronal cell injury. To study whether changes in cytoplasmic calcium activity are necessary to activate neuronal immediate early gene expression, endoplasmic reticulum (ER) calcium stores of primary neurons were depleted by exposing cells to thapsigargin (Tg), an irreversible inhibitor of ER Ca2+-ATPase. Tg-induced rise in [Ca2+]i and the effect of loading neurons with the cell-permeable calcium chelator BAPTA-AM on this increase in [Ca2+]i were measured in fura-2-loaded cells by fluorescence microscopy. Changes in c- fos mRNA levels were evaluated by quantitative PCR. Tg treatment of neurons produced a pronounced rise in c- fos mRNA levels (∼10-fold more than DMSO) which peaked at 1 h after exposure. The Tg-induced rise in c- fos mRNA content was unchanged (hippocampal neurons) or even increased further (cortical neurons) by preloading cells with BAPTA before incubation with Tg. It is concluded that in neuronal cells an increase in cytoplasmic calcium activity is not a prerequisite for a rise in mRNA levels of c- fos . Thus, stress-induced changes in mRNA levels of immediate early genes of neurons may also result from disturbances in ER calcium homeostasis and not necessarily by an overload of cells with calcium ions. The results of the present series of experiments cast further doubt on the widely accepted hypothesis that the stress-induced cytoplasmic overload of neurons with calcium ions is the primary event triggering cell injury.  相似文献   
44.
Abstract: It is well established that ischemia is associated with prolonged increases in neuronal intracellular free calcium levels. Recent data suggest that regulation of calcium uptake and release from the endoplasmic reticulum is important in maintaining calcium homeostasis. The endoplasmic reticulum Mg2+/Ca2+ ATPase is the major mechanism for sequestering calcium in this organelle. Inhibition of this enzyme may play a causal role in the loss of calcium homeostasis. In order to investigate the effect of ischemia on calcium sequestration into the endoplasmic reticulum, microsomes were isolated from control and ischemic whole brain homogenates by differential centrifugation. Calcium uptake was measured by radioactive calcium (45Ca2+) accumulation in the microsomes mediated by Mg2+/Ca2+ ATPase. Ischemia caused a statistically significant inhibition of presteady-state and steady-state calcium uptake. Duration of ischemia was directly proportional to the degree of inhibition. Decreased calcium uptake was shown not to be the result of increased calcium release from ischemic compared with control microsomes nor the result of selective isolation of ischemic microsomes from the homogenate with a decreased capacity for calcium uptake. The data demonstrate that ischemia inhibits the ability of brain microsomes to sequester calcium and suggest that loss of calcium homeostasis is due, in part, to ischemia-induced inhibition of endoplasmic reticulum Mg2+/Ca2+ ATPase.  相似文献   
45.
Chloroplasts of land plants have an active transfer RNA processing system, consisting of an RNase P-like 5 endonuclease, a 3 endonuclease, and a tRNA:CCA nucleotidyltransferase. The specificity of these enzymes resembles more that of their eukaryotic counterparts than that of their cyanobacterial predecessors. Most strikingly, chloroplast RNase P activity almost certainly resides in a protein, rather than in an RNA protein complex as in Bacteria, Archaea, and Eukarya. The chloroplast enzyme may have evolved from a preexisting chloroplast NADP-binding protein. Chloroplast RNase P cleaves pre-tRNA by a reaction mechanism in which at least one of the Mg2+ ions utilized by the bacterial ribozyme RNase P is replaced by an amino acid side chain.Abbreviations pre-tRNA precursor to tRNA - pCp cytidine 5, 3-bisphosphate - IC50 inhibitor concentration giving 50% inhibition - GAPDH glyceraldehyde 3-phosphate dehydrogenase  相似文献   
46.
The first coordination shell of an Mg(II) ion in a model protein environment is studied. Complexes containing a model carboxylate, an Mg(II) ion, various ligands (NH3, H2S, imidazole, and formaldehyde) and water of hydration about the divalent metal ion were geometry optimized. We find that for complexes with the same coordination number, the unidentate carboxylate–Mg(II) ion is greater than 10 kcal mol?1 more stable than the bidentate orientation. Imidazole was found to be the most stable ligand, followed in order by NH3 formaldehyde, H2O, and H2S. © 1995 Wiley-Liss, Inc.  相似文献   
47.
V. D. Appanna  H. Finn 《Biometals》1995,8(2):142-148
Pseudomonas fluorescens multiplied in a minimal mineral medium supplemented with iron(III) (5 mm) complexed to citrate, the sole source of carbon, with no apparent diminution in cellular mass. Atomic absorption studies of different cellular fractions and supernatant at various growth intervals revealed that the trivalent metal was initially internalized. At approximately 41 h of incubation, the soluble cellular extract contained 9.5% of the iron originally found in the growth medium. However, as bacterial multiplication progressed, most of the metal was deposited as an extracellular insoluble gelatinous residue. Phosphatidylethanolamine appeared to be an important organic constituent of this precipitate. X-ray fluorescence and diffraction studies revealed that iron(III) was deposited as amorphous hydrated oxide. Scanning electron microscopy and energy dispersive X-ray microanalysis of the pellet aided in the identification of irregular shaped bodies rich in iron and oxygen that were associated with carbon-containing elongated structures. Examination of the bacterial cells by a transmission electron microscope equipped with an electron energy loss spectrometer indicated the deposition of iron within the cells.  相似文献   
48.
以克山病病区粮配成基础饲料,另在基础饲料中分别补充Se或VE,或Se+VE喂养大鼠,在细胞及亚细胞水平上以Ca代谢为主研究并比较了Se和VE在克山病病因中的作用。测量了心肌细胞和心肌线粒体的Ca代谢及有关指标、心肌线粒体能量转换功能及心肌组织自由基含量。结果表明,在低Se病区粮中补充Se或VE均能在一定程度上预防病区粮中致病因素对心肌细胞及线粒体的损伤;并且补充Se或VE均能使心肌组织中自由基含量减少。提示Se和VE是通过清除体内过量自由基预防细胞和线粒体的损伤的。但值得注意的是,实验中所用病区粮VE含量不低于甚至高于非病区对照粮,在低Se情况下,所补VE的量需要相当大(如本实验中补充200μg/g)才能较明显地预防心肌细胞和心肌线粒体的损伤。通过对这些结果的分析,进一步肯定低Se是克山病形成的重要因素之一。  相似文献   
49.
50.
Summary The removal of Na from the medium causes a cellular Ca uptake in the smooth muscle of the guinea pig taenia coli which is rapidly reversed if medium Na is readmitted. This net extrusion was characterized in tissues which were first Na-depleted in a zero-Na (sucrose) solution. Li was able to substitute for Na in mediating this effect. K was also able to mimic Na in this respect if the depolarization-mediated Ca influx caused by the isotonic K solution was blocked with 10–5 m D-600. The net Ca extrusion upon Na readmission was due to a small decrease in Ca influx, as well as a marked increase in the transmembrane Ca efflux rate, as revealed by45Ca washout experiments. The increased45Ca efflux upon Na readmission could be mimicked by Li, K, choline and tris. We conclude that the Na/Ca-exchange hypothesis is insufficient to explain these data, in that both Ca extrusion and45Ca efflux can be stimulated in the absence of a Na gradient, or in the absence of any monovalent cationic gradient. These observations are discussed in terms of a possible intracellular competition of Ca and monovalent cations for anionic binding sites, as well as with regard to a possible direct stimulation of a plasmalemmal CaATPase by monovalent cations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号