首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   936篇
  免费   77篇
  国内免费   52篇
  1065篇
  2024年   2篇
  2023年   10篇
  2022年   17篇
  2021年   26篇
  2020年   23篇
  2019年   27篇
  2018年   41篇
  2017年   25篇
  2016年   37篇
  2015年   35篇
  2014年   46篇
  2013年   81篇
  2012年   30篇
  2011年   56篇
  2010年   51篇
  2009年   67篇
  2008年   57篇
  2007年   72篇
  2006年   59篇
  2005年   43篇
  2004年   43篇
  2003年   42篇
  2002年   20篇
  2001年   10篇
  2000年   14篇
  1999年   17篇
  1998年   12篇
  1997年   10篇
  1996年   13篇
  1995年   7篇
  1994年   9篇
  1993年   9篇
  1992年   9篇
  1991年   8篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1980年   3篇
  1979年   2篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有1065条查询结果,搜索用时 15 毫秒
81.

Background

In radiation therapy with orthovoltage units, the tube design has a crucial effect on its dosimetric features.

Aim

In this study, the effect of anode angle on photon beam spectra, depth dose and photon fluence per initial electron was studied for a commercial orthovoltage unit of X-RAD320 biological irradiator.

Materials and methods

The MCNPX MC code was used for modeling in the current study. We used the Monte Carlo method to model the X-RAD320 X-ray unit based on the manufacturer provided information. The MC model was validated by comparing the MC calculated photon beam spectra with the results of SpekCalc software. The photon beam spectra were calculated for anode angles from 15 to 35 degrees. We also calculated the percentage depth doses for some angles to verify the impact of anode angle on depth dose. Additionally, the heel effect and its relation with anode angle were studied for X-RAD320 irradiator.

Results

Our results showed that the photon beam spectra and their mean energy are changed significantly with anode angle and the optimum anode angle of 30 degrees was selected based on less heel effect and appropriate depth dose and photon fluence per initial electron.

Conclusion

It can be concluded that the anode angle of 30 degrees for X-RAD320 unit used by manufacturer has been selected properly considering the heel effect and dosimetric properties.  相似文献   
82.
The standard Karplus equation for calculating 3 J coupling constants from any given dihedral angle requires three empirical coefficients be determined that relate to the magnitudes of three modes of the angle dependency of 3 J. Considering cosine modes only (bimodal, unimodal and baseline component), Karplus curves are generally symmetric with respect to the sign of the angle argument. Typically, their primary and secondary maxima differ in amplitude, whereas the two minima are of equal depth. However, chiral molecular topologies, such as those surrounding the main-chain and side-chain torsions in amino-acid residues, preclude, as regards substituent positioning, exact mirror-image conformations from being formed—for any given torsion-angle value. It is therefore unlikely that 3 J couplings assume identical values for the corresponding positive and negative dihedral angles. This suggests that a better empirical fit of the torsion-angle dependency of 3 J could be obtained when removing the constraint of symmetrically identical coupling constants. A sine term added to the Karplus equation allows independent modelling of both curve minima typically located near dihedral-angle values of +90° and −90°. Revisiting an extensive 3 J coupling dataset previously recorded to determine the side-chain torsions χ1 in the protein flavodoxin, the asymmetric Karplus model accomplishes a more accurate fit to the experimental data. Asymmetries revealed in the angle dependencies exceed the experimental precision in determining 3 J. Accounting for these effects helps improve molecular models. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
83.
李语晨  程金花  李明峰  王宇 《生态学报》2019,39(6):1908-1916
以三种(杉木+少量栎类、杉木+栎类+光皮桦、杉木+栎类+光皮桦+马尾松)不同树种配置的杉阔混交林为研究对象,计算了角尺度、大小比数、混交度三个林分空间结构指标,全面分析了湖北省九华山林场不同树种配置杉阔混交防护林林分空间结构特征,结果表明:优势树种主要有杉木(Cunninghamia lanceolata(Lamb.)Hook.)、栎类(Quercus L.)及光皮桦(Betula luminifera)三种,并有少量马尾松(Pinus massoniana)散生于林内,生长优势也较弱。不同树种配置所呈现的林分空间结构也不相同。树种配置Ⅰ(杉木+少量栎类)的角尺度平均值为0.42,大小比数平均值为0.31,混交度平均值为0.18,林木空间分布格局和生长优势度均较好,但混交程度较弱,近乎杉木纯林,对应的生物多样性也会较小。树种配置Ⅱ(杉木+栎类+光皮桦)的角尺度平均值为0.5,大小比数平均值0.32,混交度平均数0.48,空间分布格局整体呈现随机分布;林木主要处于亚优势生长状态,混交度以中度-强度混交为主;而树种配置Ⅲ(杉木+栎类+光皮桦+马尾松)的角尺度平均值为0.58,大小比数平均值0.51,混交度平均数0.54,林木空间格局呈现聚集分布,生长优势水平中庸,为中度混交。全面分析林分空间结构,可以明确林分空间结构中存在的不合理情况,为合理择伐以及近自然经营提供科学依据,使该地区的杉阔混交林的多种功能得到可持续发挥。  相似文献   
84.
The efficiency with which a plant intercepts solar radiation is determined primarily by its architecture. Understanding the genetic regulation of plant architecture and how changes in architecture affect performance can be used to improve plant productivity. Leaf inclination angle, the angle at which a leaf emerges with respect to the stem, is a feature of plant architecture that influences how a plant canopy intercepts solar radiation. Here we identify extensive genetic variation for leaf inclination angle in the crop plant Sorghum bicolor, a C4 grass species used for the production of grain, forage, and bioenergy. Multiple genetic loci that regulate leaf inclination angle were identified in recombinant inbred line populations of grain and bioenergy sorghum. Alleles of sorghum dwarf-3, a gene encoding a P-glycoprotein involved in polar auxin transport, are shown to change leaf inclination angle by up to 34° (0.59 rad). The impact of heritable variation in leaf inclination angle on light interception in sorghum canopies was assessed using functional-structural plant models and field experiments. Smaller leaf inclination angles caused solar radiation to penetrate deeper into the canopy, and the resulting redistribution of light is predicted to increase the biomass yield potential of bioenergy sorghum by at least 3%. These results show that sorghum leaf angle is a heritable trait regulated by multiple loci and that genetic variation in leaf angle can be used to modify plant architecture to improve sorghum crop performance.  相似文献   
85.
Chlorosomes of green photosynthetic bacteria constitute the most efficient light harvesting complexes found in nature. In addition, the chlorosome is the only known photosynthetic system where the majority of pigments (BChl) is not organized in pigment-protein complexes but instead is assembled into aggregates. Because of the unusual organization, the chlorosome structure has not been resolved and only models, in which BChl pigments were organized into large rods, were proposed on the basis of freeze-fracture electron microscopy and spectroscopic constraints. We have obtained the first high-resolution images of chlorosomes from the green sulfur bacterium Chlorobium tepidum by cryoelectron microscopy. Cryoelectron microscopy images revealed dense striations approximately 20 A apart. X-ray scattering from chlorosomes exhibited a feature with the same approximately 20 A spacing. No evidence for the rod models was obtained. The observed spacing and tilt-series cryoelectron microscopy projections are compatible with a lamellar model, in which BChl molecules aggregate into semicrystalline lateral arrays. The diffraction data further indicate that arrays are built from BChl dimers. The arrays form undulating lamellae, which, in turn, are held together by interdigitated esterifying alcohol tails, carotenoids, and lipids. The lamellar model is consistent with earlier spectroscopic data and provides insight into chlorosome self-assembly.  相似文献   
86.
A set of grid type knowledge‐based energy functions is introduced for ?χ1, ψχ1, ?ψ, and χ1χ2 torsion angle combinations. Boltzmann distribution is assumed for the torsion angle populations from protein X‐ray structures, and the functions are named as statistical torsion angle potential energy functions. The grid points around periodic boundaries are duplicated to force periodicity, and the remedy relieves the derivative discontinuity problem. The devised functions rapidly improve the quality of model structures. The potential bias in the functions and the usefulness of additional secondary structure information are also investigated. The proposed guiding functions are expected to facilitate protein structure modeling, such as protein structure prediction, protein design, and structure refinement. Proteins 2013. Proteins 2013; 81:1156–1165. © 2013 Wiley Periodicals, Inc.  相似文献   
87.
Summary The cell wall protein fromAcetabularia has a non-random structure in aqueous solution at pH 5.3, as determined on the basis of intrinsic viscosity, sedimentation velocity and small angle X-ray scattering experiments. This non-random structure is stable in a pH range of 4.5–6.8, as observed on the basis of circular dichroism and viscosity measurements, supporting that the cell wall protein has a specific folded structure. All hydrodynamic measurements, including small angle X-ray scattering in solution, in this pH range are consistent with a prolate ellipsoid model for the shape of this protein, with overall dimensions ofc=86.0 Å,b=7.0 Å, anda=7.5 Å, and with a radius of gyration ofR=39.5 Å. The possibility of a coiled shape was investigated using a worm-like chain model, but it was inconsistent with the experimental data. Instead, a filled particle with uniform density which is equivalent in the scattering behavior is proposed. By a comparison of the observed radius of gyration, Rg=39.5 Å, and the radius of gyration of the cross section,R c =7.5 Å, we were able to describe the cell wall protein in terms of a prolate ellipsoid of revolution. Comparisons of the experimental scattering curve, plotted as logl (h) versus logh, with the corresponding plots of normalized intensities, calculated for particles of particular shape and various axial ratios indicate a very asymmetric shape for the cell wall protein fromAcetabularia.This research was supported by a grant of the Deutsche Forschungsgemeinschaft.  相似文献   
88.
Unique species of ceramide (Cer) with very-long-chain polyunsaturated fatty acid (VLCPUFA), mainly 28–32 carbon atoms, 4–5 double bonds, in nonhydroxy and 2-hydroxy forms (n-V Cer and h-V Cer, respectively), are generated in rat spermatozoa from the corresponding sphingomyelins during the acrosomal reaction. The aim of this study was to determine the properties of these sperm-distinctive ceramides in Langmuir monolayers. Individual Cer species were isolated by HPLC and subjected to analysis of surface pressure, surface potential, and Brewster angle microscopy (BAM) as a function of molecular packing. In comparison with known species of Cer, n-V Cer and h-V Cer species showed much larger mean molecular areas and increased molecular dipole moments in liquid expanded phases, which suggest bending and partial hydration of the double bonded portion of the VLCPUFA. The presence of the 2-hydoxyl group induced a closer molecular packing in h-V Cer than in their chain-matched n-V Cer. In addition, all these Cer species showed liquid-expanded to liquid-condensed transitions at room temperature. Existence of domain segregation was confirmed by BAM. Additionally, thermodynamic analysis suggests a phase transition close to the physiological temperature for VLCPUFA-Cers if organized as bulk dispersions.  相似文献   
89.
Rice tiller angle determines plant growth density and further contributes grain production. Although a few genes have been characterized to regulate tiller angle in rice, the molecular mechanism underlying the control of tiller angle via microRNA is poorly understood. Here, we report that rice tiller angle is controlled by OsmiR167a‐targeted auxin response factors OsARF12, OsARF17 and OsARF25. In the overexpression of OsMIR167a plants, the expression of OsARF12, OsARF17 and OsARF25 was severely repressed and displayed larger tiller angle as well as the osarf12/osarf17 and osarf12/ osarf25 plants. In addition, those plants showed compromised abnormal auxin distribution and less sensitive to gravity. We also demonstrate that OsARF12, OsARF17 and OsARF25 function redundantly and might be involved in HSFA2D and LAZY1‐dependent asymmetric auxin distribution pathway to control rice tiller angle. Our results reveal that OsmiR167a represses its targets, OsARF12, OsARF17 and OsARF25, to control rice tiller angle by fine‐tuning auxin asymmetric distribution in shoots.  相似文献   
90.

Methods

Combining small-angle X-ray and neutron scattering measurements with inelastic neutron scattering experiments, we investigated the impact of high hydrostatic pressure on the structure and dynamics of β-lactoglobulin (βLG) in aqueous solution.

Background

βLG is a relatively small protein, which is predominantly dimeric in physiological conditions, but dissociates to monomer below about pH 3.

Results

High-pressure structural results show that the dimer–monomer equilibrium, as well as the protein–protein interactions, are only slightly perturbed by pressure, and βLG unfolding is observed above a threshold value of 3000 bar. In the same range of pressure, dynamical results put in evidence a slowing down of the protein dynamics in the picosecond timescale and a loss of rigidity of the βLG structure. This dynamical behavior can be related to the onset of unfolding processes, probably promoted from water penetration in the hydrophobic cavity.

General significance

Results suggest that density and compressibility of water molecules in contact with the protein are key parameters to regulate the protein flexibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号