首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1658篇
  免费   128篇
  国内免费   28篇
  1814篇
  2024年   2篇
  2023年   29篇
  2022年   46篇
  2021年   55篇
  2020年   67篇
  2019年   57篇
  2018年   69篇
  2017年   46篇
  2016年   66篇
  2015年   107篇
  2014年   97篇
  2013年   155篇
  2012年   79篇
  2011年   94篇
  2010年   67篇
  2009年   98篇
  2008年   85篇
  2007年   79篇
  2006年   77篇
  2005年   76篇
  2004年   70篇
  2003年   57篇
  2002年   60篇
  2001年   33篇
  2000年   37篇
  1999年   23篇
  1998年   17篇
  1997年   9篇
  1996年   7篇
  1995年   6篇
  1994年   8篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有1814条查询结果,搜索用时 15 毫秒
121.
Patharkar OR  Cushman JC 《Planta》2006,225(1):57-73
McCPK1 (Mesembryanthemum crystallinum calcium-dependent protein kinase 1) mRNA expression is induced transiently by salinity and water deficit stress and also McCPK1 undergoes dynamic subcellular localization changes in response to these same stresses. Here we have confirmed that low humidity is capable of causing a drastic change in McCPK1’s subcellular localization. We attempted to elucidate this phenomenon by isolating components likely to be involved in this process. McCAP1 (M. crystallinum CDPK adapter protein 1) was cloned in a yeast two-hybrid screen with a constitutively active McCPK1 as bait. We show that McCPK1 and McCAP1 can interact in the yeast two-hybrid system, in vitro, and in vivo as demonstrated by coimmunoprecipitation experiments from plant extracts. However, McCAP1 does not appear to be a substrate for McCPK1. DsRed–McCAP1 and EGFP–McCPK1 fusions colocalize in epidermal cells of ice plants exposed to low humidity. McCAP1 is homologous to a family of proteins in Arabidopsis with no known function. Computational threading analysis suggests that McCAP1 is likely to be an intermediate filament protein of the cytoskeleton.  相似文献   
122.
In a combination of biochemical and immunoelectron-microscopical approaches we studied intracellular trafficking and localization of the endoplasmic-reticulum (ER)-formed complexes of murine MHC class II molecule I-Ab and an antigenic peptide E52–68 covalently linked to its -chain. The association with the peptide in the ER leads to sharp acceleration of the intracellular trafficking of the complexes to the plasma membrane. Within the cells, E52–68:I-Ab complexes accumulate in the multivesicular MHC class II compartment (MIIC), but not in denser multilaminar or intermediate type MIICs. The changes in the trafficking of ER-formed complexes result solely from the presence of the tethered peptide, since wild-type class II molecules traffic similarly in bare lymphocyte syndrome cells and in wild-type antigen-presenting cells.  相似文献   
123.
124.
We have established a versatile method for studying the interaction of the oleosin gene product with oil bodies during oil body biogenesis in plants. Our approach has been to transiently express a green fluorescent protein (GFP)-tagged Arabidopsis oleosin gene fusion in tobacco leaf cells containing bona fide oil bodies and then to monitor oleosin-GFP expression using real-time confocal laser scanning microscopy. We show that normally non-oil-storing tobacco leaf cells are able to synthesize and then transport oleosin-GFP fusion protein to leaf oil bodies. Synthesis and transport of oleosin-GFP fusion protein to oil bodies occurred within the first 6 h posttransformation. Oleosin-GFP fusion protein exclusively associated with the endoplasmic reticulum and was trafficked in a Golgi-independent manner at speeds approaching 0.5 microm sec(-1) along highly dynamic endoplasmic reticulum positioned over essentially static polygonal cortical endoplasmic reticulum. Our data indicate that oil body biogenesis can occur outside of the embryo and that oleosin-GFP can be used to monitor early events in oil body biogenesis in real-time.  相似文献   
125.
《Fungal biology》2021,125(11):914-922
Lectins are characterized of the carbohydrate-binding ability and play comprehensive roles in fungal physiology (e.g., defense response, development and host–pathogen interaction). Beauveria bassiana, a filamentous entomopathogenic fungus, has a lectin-like protein containing a Fruit Body_domain (BbLec1). BbLec1 could bind to chitobiose and chitin in fungal cell wall. BbLec1 proteins interacted with each other to form multimers, and translocated into eisosomes. Further, the interdependence between BbLec1 and the eisosome protein PliA was essential for stabilizing the eisosome architecture. To test the BbLec1 roles in B. bassiana, we constructed the gene disruption and complementation mutants. Notably, the BbLec1 loss resulted in the impaired cell wall in mycelia and conidia as well as conidial formation capacity. In addition, disruption of BbLec1 led to the reduced cytomembrane integrity and the enhanced sensitivity to osmotic stress. Finally, ΔBbLec1 mutant strain displayed the weakened virulence when compared with the wild-type strain. Taken together, BbLec1 traffics into eisosome and links the functionality of eisosome to development and virulence of B. bassiana.  相似文献   
126.
Plant viruses must enter the host vascular system in order to invade the young growing parts of the plant rapidly. Functional entry sites into the leaf vascular system for rapid systemic infection have not been determined for any plant/virus system. Tobacco mosaic virus (TMV) entry into minor, major and transport veins from non-vascular cells of Nicotiana benthamiana in source tissue and its exit from veins in sink tissue was studied using a modified virus expressing green fluorescent protein (GFP). Using a surgical procedure that isolated specific leaf and stem tissues from complicating vascular tissues, we determined that TMV could enter minor, major or transport veins directly from non-vascular cells to produce a systemic infection. TMV first accumulated in abaxial or external phloem-associated cells in major veins and petioles of the inoculated leaf and stems below the inoculated leaf. It also initially accumulated exclusively in internal or adaxial phloem-associated cells in stems above the inoculated leaf and petioles or major veins of sink leaves. This work shows the functional equivalence of vein classes in source leaves for entry of TMV, and the lack of equivalence of vein classes in sink leaves for exit of TMV. Thus, the specialization of major veins for transport rather than loading of photoassimilates in source tissue does not preclude virus entry. During transport, the virus initially accumulates in specific vascular-associated cells, indicating that virus accumulation in this tissue is highly regulated. These findings have important implications for studies on the identification of symplasmic domains and host macromolecule vascular transport.  相似文献   
127.
128.
Abstract

Polyketide synthases (PKSs) are responsible for synthesizing a myriad of natural products with agricultural, medicinal relevance. The PKSs consist of multiple functional domains of which each can catalyze a specified chemical reaction leading to the synthesis of polyketides. Biochemical studies showed that protein–substrate and protein–protein interactions play crucial roles in these complex regio-/stereo-selective biochemical processes. Recent developments on X-ray crystallography and protein NMR techniques have allowed us to understand the biosynthetic mechanism of these enzymes from their structures. These structural studies have facilitated the elucidation of the sequence–function relationship of PKSs and will ultimately contribute to the prediction of product structure. This review will focus on the current knowledge of type I PKS structures and the protein–protein interactions in this system.  相似文献   
129.
130.
α1-antitrypsin (AAT) regulates the activity of multiple proteases in the lungs and liver. A mutant of AAT (E342K) called ATZ forms polymers that are present at only low levels in the serum and induce intracellular protein inclusions, causing lung emphysema and liver cirrhosis. An understanding of factors that can reduce the intracellular accumulation of ATZ is of great interest. We now show that calreticulin (CRT), an endoplasmic reticulum (ER) glycoprotein chaperone, promotes the secretory trafficking of ATZ, enhancing the media:cell ratio. This effect is more pronounced for ATZ than with AAT and is only partially dependent on the glycan-binding site of CRT, which is generally relevant to substrate recruitment and folding by CRT. The CRT-related chaperone calnexin does not enhance ATZ secretory trafficking, despite the higher cellular abundance of calnexin-ATZ complexes. CRT deficiency alters the distributions of ATZ-ER chaperone complexes, increasing ATZ-BiP binding and inclusion body formation and reducing ATZ interactions with components required for ER-Golgi trafficking, coincident with reduced levels of the protein transport protein Sec31A in CRT-deficient cells. These findings indicate a novel role for CRT in promoting the secretory trafficking of a protein that forms polymers and large intracellular inclusions. Inefficient secretory trafficking of ATZ in the absence of CRT is coincident with enhanced accumulation of ER-derived ATZ inclusion bodies. Further understanding of the factors that control the secretory trafficking of ATZ and their regulation by CRT could lead to new therapies for lung and liver diseases linked to AAT deficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号