首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   18篇
  国内免费   4篇
  2023年   2篇
  2022年   9篇
  2021年   6篇
  2020年   11篇
  2019年   10篇
  2018年   9篇
  2017年   3篇
  2016年   4篇
  2015年   14篇
  2014年   8篇
  2013年   18篇
  2012年   6篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   9篇
  2007年   8篇
  2006年   7篇
  2005年   4篇
  2004年   13篇
  2003年   7篇
  2002年   9篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
排序方式: 共有232条查询结果,搜索用时 31 毫秒
71.
Folding of outer membrane proteins (OMPs) has been studied extensively in vitro. However, most of these studies have been conducted in dilute buffer solution, which is different from the crowded environment in the cell periplasm, where the folding and membrane insertion of OMPs actually occur. Using OmpA and OmpT as model proteins and Ficoll 70 as the crowding agent, here we investigated the effect of the macromolecular crowding condition on OMP membrane insertion. We found that the presence of Ficoll 70 significantly slowed down the rate of membrane insertion of OmpA while had little effect on those of OmpT. To investigate if the soluble domain of OmpA slowed down membrane insertion in the presence of the crowding agent, we created a truncated OmpA construct that contains only the transmembrane domain (OmpA171). In the absence of crowding agent, OmpA171 refolded at a similar rate as OmpA, although with decreased efficiency. However, under the crowding condition, OmpA171 refolded significantly faster than OmpA. Our results suggest that the periplasmic domain slows down the rate, while improves the efficiency, of OmpA folding and membrane insertion under the crowding condition. Such an effect was not obvious when refolding was studied in buffer solution in the absence of crowding.  相似文献   
72.
Intrinsic rates of exchange are essential parameters for obtaining protein stabilities from amide 1H exchange data. To understand the influence of the intracellular environment on stability, one must know the effect of the cytoplasm on these rates. We probed exchange rates in buffer and in Escherichia coli lysates for the dynamic loop in the small globular protein chymotrypsin inhibitor 2 using a modified form of the nuclear magnetic resonance experiment, SOLEXSY. No significant changes were observed, even in 100 g dry weight L−1 lysate. Our results suggest that intrinsic rates from studies conducted in buffers are applicable to studies conducted under cellular conditions.  相似文献   
73.
Coot is a tool widely used for model building, refinement, and validation of macromolecular structures. It has been extensively used for crystallography and, more recently, improvements have been introduced to aid in cryo‐EM model building and refinement, as cryo‐EM structures with resolution ranging 2.5–4 A are now routinely available. Model building into these maps can be time‐consuming and requires experience in both biochemistry and building into low‐resolution maps. To simplify and expedite the model building task, and minimize the needed expertise, new tools are being added in Coot. Some examples include morphing, Geman‐McClure restraints, full‐chain refinement, and Fourier‐model based residue‐type‐specific Ramachandran restraints. Here, we present the current state‐of‐the‐art in Coot usage.  相似文献   
74.
Microtubules polymerize from identical tubulin heterodimers, which form a helical lattice pattern that is the microtubule. This pattern always has left-handed chirality, but it is not known why. But as tubulin, similar to other proteins, evolved for a purpose, the question of the title of this artcile appears to be meaningful. In a computer simulation that explores the 'counterfactual biology' of microtubules without helicity, we demonstrate that these have the same mechanical properties as Nature's microtubules with helicity. Thus only a dynamical reason for helicity is left as potential explanation. We find that helicity solves 'the problem of the blind mason', i.e. how to correctly build a structure, guided only by the shape of the bricks. This answer in turn raises some new questions for researchers to address.  相似文献   
75.
Our current understanding of the temperature response of biological processes in soil is based on the Arrhenius equation. This predicts an exponential increase in rate as temperature rises, whereas in the laboratory and in the field, there is always a clearly identifiable temperature optimum for all microbial processes. In the laboratory, this has been explained by denaturation of enzymes at higher temperatures, and in the field, the availability of substrates and water is often cited as critical factors. Recently, we have shown that temperature optima for enzymes and microbial growth occur in the absence of denaturation and that this is a consequence of the unusual heat capacity changes associated with enzymes. We have called this macromolecular rate theory – MMRT (Hobbs et al., 2013 , ACS Chem. Biol. 8:2388). Here, we apply MMRT to a wide range of literature data on the response of soil microbial processes to temperature with a focus on respiration but also including different soil enzyme activities, nitrogen and methane cycling. Our theory agrees closely with a wide range of experimental data and predicts temperature optima for these microbial processes. MMRT also predicted high relative temperature sensitivity (as assessed by Q10 calculations) at low temperatures and that Q10 declined as temperature increases in agreement with data synthesis from the literature. Declining Q10 and temperature optima in soils are coherently explained by MMRT which is based on thermodynamics and heat capacity changes for enzyme‐catalysed rates. MMRT also provides a new perspective, and makes new predictions, regarding the absolute temperature sensitivity of ecosystems – a fundamental component of models for climate change.  相似文献   
76.
Structure-function studies of membrane proteins greatly benefit from having available high-resolution 3-D structures of the type provided through macromolecular X-ray crystallography (MX). An essential ingredient of MX is a steady supply of ideally diffraction-quality crystals. The in meso or lipidic cubic phase (LCP) method for crystallizing membrane proteins is one of several methods available for crystallizing membrane proteins. It makes use of a bicontinuous mesophase in which to grow crystals. As a method, it has had some spectacular successes of late and has attracted much attention with many research groups now interested in using it. One of the challenges associated with the method is that the hosting mesophase is extremely viscous and sticky, reminiscent of a thick toothpaste. Thus, dispensing it manually in a reproducible manner in small volumes into crystallization wells requires skill, patience and a steady hand. A protocol for doing just that was developed in the Membrane Structural & Functional Biology (MS&FB) Group1-3. JoVE video articles describing the method are available1,4. The manual approach for setting up in meso trials has distinct advantages with specialty applications, such as crystal optimization and derivatization. It does however suffer from being a low throughput method. Here, we demonstrate a protocol for performing in meso crystallization trials robotically. A robot offers the advantages of speed, accuracy, precision, miniaturization and being able to work continuously for extended periods under what could be regarded as hostile conditions such as in the dark, in a reducing atmosphere or at low or high temperatures. An in meso robot, when used properly, can greatly improve the productivity of membrane protein structure and function research by facilitating crystallization which is one of the slow steps in the overall structure determination pipeline. In this video article, we demonstrate the use of three commercially available robots that can dispense the viscous and sticky mesophase integral to in meso crystallogenesis. The first robot was developed in the MS&FB Group5,6. The other two have recently become available and are included here for completeness. An overview of the protocol covered in this article is presented in Figure 1. All manipulations were performed at room temperature (~20 °C) under ambient conditions.  相似文献   
77.
In this contribution, we have studied the dynamics of electron transfer (ET) of a flavoprotein to the bound cofactor, an important metabolic process, in a model molecular/macromolecular crowding environments. Vitamin B2 (riboflavin, Rf) and riboflavin binding protein (RBP) are used as model cofactor and flavoprotein, respectively. An anionic surfactant sodium dodecyl sulfate (SDS) is considered to be model crowding agent. A systematic study on the ET dynamics in various SDS concentration, ranging from below critical micellar concentration (CMC), where the surfactants remain as monomeric form to above CMC, where the surfactants self-assemble to form nanoscopic micelle, explores the dynamics of ET in the model molecular and macromolecular crowding environments. With energy selective excitation in picosecond-resolved studies, we have followed temporal quenching of the tryptophan residue of the protein and Rf in the RBP–Rf complex in various degrees of molecular/macromolecular crowding. The structural integrity of the protein (secondary and tertiary structures) and the vitamin binding capacity of RBP have been investigated using various techniques including UV–Vis, circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) studies in the crowding environments. Our finding suggests that the effect of molecular/macromolecular crowding could have major implication in the intra-protein ET dynamics in cellular environments.  相似文献   
78.
Theory predicts that the net charge (Z) of a protein can be altered by the net charge of a neighboring protein as the two approach one another below the Debye length. This type of charge regulation suggests that a protein''s charge and perhaps function might be affected by neighboring proteins without direct binding. Charge regulation during protein crowding has never been directly measured due to analytical challenges. Here, we show that lysine specific protein crosslinkers (NHS ester‐Staudinger pairs) can be used to mimic crowding by linking two non‐interacting proteins at a maximal distance of ~7.9 Å. The net charge of the regioisomeric dimers and preceding monomers can then be determined with lysine‐acyl “protein charge ladders” and capillary electrophoresis. As a proof of concept, we covalently linked myoglobin (Z monomer = −0.43 ± 0.01) and α‐lactalbumin (Z monomer = −4.63 ± 0.05). Amide hydrogen/deuterium exchange and circular dichroism spectroscopy demonstrated that crosslinking did not significantly alter the structure of either protein or result in direct binding (thus mimicking crowding). Ultimately, capillary electrophoretic analysis of the dimeric charge ladder detected a change in charge of ΔZ = −0.04 ± 0.09 upon crowding by this pair (Z dimer = −5.10 ± 0.07). These small values of ΔZ are not necessarily general to protein crowding (qualitatively or quantitatively) but will vary per protein size, charge, and solvent conditions.  相似文献   
79.
Macromolecular crowding, a common phenomenon in the cellular environments, can significantly affect the thermodynamic and kinetic properties of proteins. A single-molecule method based on atomic force microscopy (AFM) was used to investigate the effects of macromolecular crowding on the forces required to unfold individual protein molecules. It was found that the mechanical stability of ubiquitin molecules was enhanced by macromolecular crowding from added dextran molecules. The average unfolding force increased from 210 pN in the absence of dextran to 234 pN in the presence of 300 g/L dextran at a pulling speed of 0.25 microm/sec. A theoretical model, accounting for the effects of macromolecular crowding on the native and transition states of the protein molecule by applying the scaled-particle theory, was used to quantitatively explain the crowding-induced increase in the unfolding force. The experimental results and interpretation presented could have wide implications for the many proteins that experience mechanical stresses and perform mechanical functions in the crowded environment of the cell.  相似文献   
80.
电镜观察揭示,三角杨(Populus deltoides Marsh.)和冬小麦(Triticum aestivum L. cv.Seward 80004)的胞间连丝(PD)结构在8 h短日照和寒冷冬季里发生明显的变化,并在这两种植物之间表现出明显的区别.在16 h长日照条件下,杨树顶芽分生组织和冬小麦幼叶组织细胞壁中形成大量的PD,染色较深,并可看到细胞质中的内质网(ER)与PD中ER的连接;在冬小麦幼叶组织中还可观察到典型的"颈型"PD,其中央桥管(压扁的ER)清晰可见.在短日照条件下,杨树顶芽细胞壁中出现许多不完整的、中断的PD,有些PD在壁的中部发生膨胀,形成空腔,看不到中央桥管.然而,冬小麦幼叶组织中的PD不发生明显的改变,与长日照条件下的结构基本相似.在寒冷冬季里,杨树PD结构的变化与短日照的相似.冬小麦的PD也发生明显的变化,主要表现在两个方面:一是PD口被一种电子稠密物质堵塞;二是颈区口径缩小.PD的这些变化以及在这两种植物(木本和草本)之间的区别,证实了木本杨树和草本冬小麦对短日照反应和休眠状态的不同.短日照能诱发木本杨树基因表达的改变,产生结构和生理生化过程的变化,进入休眠,并在秋季低温共同作用下,进一步发展抗寒力.这里观察到杨树PD在短日照和寒冬中的中断正是从结构上导致其植株进入休眠和提高抗寒力的一个过程.冬小麦对短日照不起反应,低温则能诱发其抗寒基因表达,发展抗寒力,但不产生"生理休眠",所以它的PD在短日照下不发生变化,在低温下的改变则很容易恢复,当冬小麦在大气温度升高时,颈口的堵塞物质会迅速消失,口径也会迅速扩大,植株随即迅速恢复生长.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号