首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   27篇
  国内免费   1篇
  2023年   10篇
  2022年   19篇
  2021年   38篇
  2020年   22篇
  2019年   26篇
  2018年   28篇
  2017年   18篇
  2016年   17篇
  2015年   18篇
  2014年   34篇
  2013年   31篇
  2012年   24篇
  2011年   29篇
  2010年   13篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有331条查询结果,搜索用时 15 毫秒
41.
42.
It is widely recognized that after endocytosis, internalized cargo is delivered to endosomes that act as sorting stations. The limiting membrane of endosomes contain specialized subregions, or microdomains, that represent distinct functions of the endosome, including regions competing for cargo capture leading to degradation or recycling. Great progress has been made in defining the endosomal protein coats that sort cargo in these domains, including Retromer that recycles transmembrane cargo, and ESCRT (endosomal sorting complex required for transport) that degrades transmembrane cargo. In this review, we discuss recent work that is beginning to unravel how such coat complexes contribute to the creation and maintenance of endosomal microdomains. We highlight data that indicates that adjacent microdomains do not act independently but rather interact to cross-regulate. We posit that these interactions provide an agile means for the cell to adjust sorting in response to extracellular signals and intracellular metabolic cues.  相似文献   
43.
44.
Genetic polymorphisms in the fat mass and obesity-associated (FTO) gene have been strongly associated with obesity in humans. The cellular level of FTO is tightly regulated, with alterations in its expression influencing energy metabolism, food intake and body weight. Although the proteasome system is involved, the cellular mechanism underlying FTO protein turnover remains unknown. Here, we report that FTO undergoes post-translational ubiquitination on Lys-216. Knock-in HeLa cells harboring the ubiquitin-deficient K216R mutation displayed a slower rate of FTO turnover, resulting in an increase in the level of FTO as well as enhanced phosphorylation of the ribosomal S6 kinase. Surprisingly, we also found that K216R mutation reduced the level of nuclear FTO and completely abolished the nuclear translocation of FTO in response to amino acid starvation. Collectively, our results reveal the functional importance of ubiquitination in controlling FTO expression and localization, which may be crucial for determining body mass and composition.  相似文献   
45.
Mammalian target of rapamycin (mTOR) is a core component of raptor-mTOR (mTORC1) and rictor-mTOR (mTORC2) complexes that control diverse cellular processes. Both mTORC1 and mTORC2 regulate several elements downstream of type I insulin-like growth factor receptor (IGF-IR) and insulin receptor (InsR). However, it is unknown whether and how mTOR regulates IGF-IR and InsR themselves. Here we show that mTOR possesses unexpected tyrosine kinase activity and activates IGF-IR/InsR. Rapamycin induces the tyrosine phosphorylation and activation of IGF-IR/InsR, which is largely dependent on rictor and mTOR. Moreover, mTORC2 promotes ligand-induced activation of IGF-IR/InsR. IGF- and insulin-induced IGF-IR/InsR phosphorylation is significantly compromised in rictor-null cells. Insulin receptor substrate (IRS) directly interacts with SIN1 thereby recruiting mTORC2 to IGF-IR/InsR and promoting rapamycin- or ligand-induced phosphorylation of IGF-IR/InsR. mTOR exhibits tyrosine kinase activity towards the general tyrosine kinase substrate poly(Glu-Tyr) and IGF-IR/InsR. Both recombinant mTOR and immunoprecipitated mTORC2 phosphorylate IGF-IR and InsR on Tyr1131/1136 and Tyr1146/1151, respectively. These effects are independent of the intrinsic kinase activity of IGF-IR/InsR, as determined by assays on kinase-dead IGF-IR/InsR mutants. While both rictor and mTOR immunoprecitates from rictor+/+ MCF-10A cells exhibit tyrosine kinase activity towards IGF-IR and InsR, mTOR immunoprecipitates from rictor−/− MCF-10A cells do not induce IGF-IR and InsR phosphorylation. Phosphorylation-deficient mutation of residue Tyr1131 in IGF-IR or Tyr1146 in InsR abrogates the activation of IGF-IR/InsR by mTOR. Finally, overexpression of rictor promotes IGF-induced cell proliferation. Our work identifies mTOR as a dual-specificity kinase and clarifies how mTORC2 promotes IGF-IR/InsR activation.  相似文献   
46.
Among the long list of age-related complications, Alzheimer’s disease (AD) has the most dreadful impact on the quality of life due to its devastating effects on memory and cognitive abilities. Although a plausible correlation between the phosphatidylinositol 3-kinase (PI3K) signaling and different processes involved in neurodegeneration has been evidenced, few articles reviewed the task. The current review aims to unravel the mechanisms by which the PI3K pathway plays pro-survival roles in normal conditions, and also to discuss the original data obtained from international research laboratories on this topic. Responses to questions on how alterations of the PI3K/Akt signaling pathway affect Tau phosphorylation and the amyloid cascade are given. In addition, we provide a general overview of the association between oxidative stress, neuroinflammation, alterations of insulin signaling, and altered autophagy with aberrant activation of this axis in the AD brain. The last section provides a special focus on the therapeutic possibility of the PI3K/Akt/mTOR modulators, either categorized as chemicals or herbals, in AD. In conclusion, determining the correct timing for the administration of the drugs seems to be one of the most important factors in the success of these agents. Also, the role of the PI3K/Akt signaling axis in the progression or repression of AD widely depends on the context of the cells; generally speaking, while PI3K/Akt activation in neurons and neural stem cells is favorable, its activation in microglia cells may be harmful.  相似文献   
47.
48.
49.
50.
An acute bout of exercise induces repression of protein synthesis in skeletal muscle due in part to reduced signaling through the mammalian target of rapamycin complex 1 (mTORC1). Previous studies have shown that upregulated expression of regulated in DNA damage and development (REDD) 1 and 2 is an important mechanism in the regulation of mTORC1 activity in response to a variety of stresses. This study investigated whether induction of REDD1/2 expression occurs in rat skeletal muscle in response to a burst of endurance exercise. In addition, we determined if ingestion of glucose or branched chain amino acids (BCAA) before exercise changes the expression of REDD1/2 in muscle. Rats ran on a motor-driven treadmill at a speed of 28 m min−1 for 90 min, and then the gastrocnemius muscle was removed and analyzed for phosphorylation of the eukaryotic initiation factor (eIF) 4E binding protein 1 (4E-BP1) and expression of REDD1/2. Exercise repressed the mTORC1-signaling pathway regardless of the ingestion of nutrients before the exercise, as shown by dephosphorylation of 4E-BP1. In addition, exercise induced the expression of REDD1 mRNA (∼8-fold) and protein (∼3-fold). Exercise-induced expression of REDD1 was not affected by the ingestion of glucose or BCAA. Expression of REDD2 mRNA was not altered by either exercise or nutrients. These findings indicated that enhanced expression of REDD1 may be an important mechanism that could partially explain the downregulation of mTORC1 signaling, and subsequent inhibition of protein synthesis in skeletal muscle during exercise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号